IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp21-30.html
   My bibliography  Save this article

Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor

Author

Listed:
  • Yang, Xinyu
  • Shao, Shanshan
  • Li, Xiaohua
  • Tang, Dong

Abstract

The catalytic transfer hydrogenation (CTH) of bio-oil over CuO/PC (porous carbon) with the solid residue produced during biomass pyrolysis as the carrier was investigated with methanol as the hydrogen donor. The effect of carbonization temperature, activation temperature, KOH solution and metal loading on the physicochemical characteristics of CuO/PC catalystand catalytic transfer hydrogenation of bio-oil were investigated. The main alcohols formed in the CTH of bio-oil were 1, 4-butanediol, 1, 3-cyclopentadiol, 1, 3-cyclohexanediol, 2-cyclohexenol and alcohols. It was revealed that more alcohols were produced over CuO/PC using less Cu(NO3)2 than Cu2Al considering their favorable porous system. The well-developed pore structure is formed in PC at a higher calcination temperature and the concentration of activator, which was favorable for the CTH of bio-oil. Under the optimized preparation conditions, the mesopores accounting for 50% in the total pores, achieving the maximized yield of alcohols of 81%, and the well recycling performance was observed with the overall yield of alcohols decreases within 3% after five cycles because of the greater mesopores ratio. The biochar-based PC catalyst in this work enhances the effective usage of biomass to produce alcohols, fully conforming to the theme of energy conservation and low-carbon times.

Suggested Citation

  • Yang, Xinyu & Shao, Shanshan & Li, Xiaohua & Tang, Dong, 2023. "Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor," Renewable Energy, Elsevier, vol. 211(C), pages 21-30.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:21-30
    DOI: 10.1016/j.renene.2023.04.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Wei, Xiaocui & Cao, Yang & Li, Jin, 2022. "Synergistic effect of acid sites and a gallium-based modified meso-/microporous catalyst for the pyrolysis of biomass," Renewable Energy, Elsevier, vol. 191(C), pages 580-590.
    3. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    4. Hu, Di & Zhang, Man & Xu, Hong & Wang, Yuchen & Yan, Kai, 2021. "Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jinlong & Shen, Tianhao & Hu, Jianhang & Zhang, Fengxia & Yang, Shiliang & Liu, Huili & Wang, Hua, 2023. "Study on thermochemical conversion of triglyceride biomass catalyzed by biochar catalyst," Energy, Elsevier, vol. 277(C).
    2. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    3. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    4. Cheng Huang & Xiuyun Sun & Lianjun Wang & Paul Storer & Kadambot H. M. Siddique & Zakaria M. Solaiman, 2021. "Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    5. Zhao, Zhiyue & Jiang, Zhiwei & Lin, Lu & Qiu, Rongliang & Yan, Kai, 2023. "Synthesis of alkoxyphenols-rich bio-oil by microwave-assisted catalytic pyrolysis of wood over MoS2 catalyst," Renewable Energy, Elsevier, vol. 219(P2).
    6. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    8. Blignaut, James & Meissner, Heinz & Smith, Hendrik & du Toit, Linde, 2022. "An integrative bio-physical approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A system dynamics approach," Agricultural Systems, Elsevier, vol. 195(C).
    9. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    10. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    11. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    12. Guo, Haixin & Isoda, Yukiya & Honma, Tetsuo & Shen, Feng & Smith Jr, Richard Lee, 2024. "Sustainably-derived sulfonated pinecone-based hydrochar catalyst for carbohydrate dehydration," Renewable Energy, Elsevier, vol. 232(C).
    13. Gunasekaran, Vijayakumar & Gurusamy, Harichandran & Ravi, Ganesan & Rathinam, Yuvakkumar, 2024. "Sustainable synthesis of bio-diesel and jet-fuel range hydrocarbons from poisonous Abrus Precatorius seed oil over MoO3-HPW/Ga-KIT-6," Renewable Energy, Elsevier, vol. 224(C).
    14. Li, Yingkai & Zhu, Linyu & Yellezuome, Dominic & Zhou, Zhongyue & Tao, Shanwen & Liu, Ronghou, 2024. "Catalytic pyrolysis of poplar sawdust pretreated with combined leaching and torrefaction over Fe–Ni/ZSM-5 for aromatic-rich bio-oil production," Renewable Energy, Elsevier, vol. 227(C).
    15. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Marco Antonio Rodriguez-Dominguez & Patrick Biller & Pedro N. Carvalho & Hans Brix & Carlos Alberto Arias, 2021. "Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform," Energies, MDPI, vol. 14(23), pages 1-17, December.
    18. Zhang, Li & Yao, Zonglu & Zhao, Lixin & Li, Zhihe & Yi, Weiming & Kang, Kang & Jia, Jixiu, 2021. "Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar," Energy, Elsevier, vol. 232(C).
    19. Wang, Zhihao & Xia, Shengpeng & Wang, Xiaobo & Fan, Yuyang & Zhao, Kun & Wang, Shuang & Zhao, Zengli & Zheng, Anqing, 2024. "Catalytic production of 5-hydroxymethylfurfural from lignocellulosic biomass: Recent advances, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    20. Han, Lanfang & Sun, Haoran & Sun, Ke & Yang, Yan & Fang, Liping & Xing, Baoshan, 2021. "Effect of Fe and Al ions on the production of biochar from agricultural biomass: Properties, stability and adsorption efficiency of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:21-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.