IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124012072.html
   My bibliography  Save this article

Red mud as hydrogen producer in hydrothermal liquefaction of pinewood: Minimization of process wastes by recycling the water and hydrochar phases

Author

Listed:
  • Damizia, Martina
  • Bracciale, Maria Paola
  • Mousavi, Seyedmohammad
  • Tai, Lingyu
  • De Filippis, Paolo
  • de Caprariis, Benedetta

Abstract

Red mud, a main waste of aluminum industry containing high amount of Fe2O3 (20–30 %), was used for the first time post-reduction as iron source in the hydrothermal liquefaction (HTL) of pinewood; aiming to maximize bio-crude yield and quality, exploiting the Fe oxidation with water to produce in-situ H2. The red mud capacity to produce H2 was investigated reducing it with the hydrochar produced through HTL at 900 °C for 3h. Red mud catalytic activity in biomass decomposition reactions, attributed to the presence of Al2O3, TiO2, SiO2 etc., was also assessed testing the as-received (FRM) and calcinated (CRM, 900 °C-3h) samples. HTL tests were performed at 330 °C for 10 min, adding an amount of red mud containing 6 wt% of Fe with respect to the biomass. The reduced red mud (RRM) demonstrated the highest activity in the conversion of biomass into high quality bio-crude (yield of 49 wt%, HHV = 30.81 MJ/kg), acting both as H2 producer and as a catalyst. Furthermore, to minimize the process wastes, the recycle of water phase (WP) and the RRM was performed for 5 consecutive runs demonstrating the feasibility of the proposed process with a considerable increase of bio-crude yield (60 wt%) and quality (HHV = 30.89 MJ/kg).

Suggested Citation

  • Damizia, Martina & Bracciale, Maria Paola & Mousavi, Seyedmohammad & Tai, Lingyu & De Filippis, Paolo & de Caprariis, Benedetta, 2024. "Red mud as hydrogen producer in hydrothermal liquefaction of pinewood: Minimization of process wastes by recycling the water and hydrochar phases," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124012072
    DOI: 10.1016/j.renene.2024.121139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124012072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.