IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp875-884.html
   My bibliography  Save this article

Hydrodynamics and load shedding behavior of a variable-geometry oscillating surge wave energy converter (OSWEC)

Author

Listed:
  • Choiniere, Michael
  • Davis, Jacob
  • Nguyen, Nhu
  • Tom, Nathan
  • Fowler, Matthew
  • Thiagarajan, Krish

Abstract

In order to improve their long-term viability, wave energy converters (WECs) need to be able to shed loads when a threshold wave condition is exceeded. As shown by Tom et al. (2016) [1], provision of adjustable flaps within the body of an oscillating surge wave energy converter (OSWEC) allows wave energy to pass through the device. A control system may then be able to open and close the flaps when waves approaching the device exceed preset thresholds. The variable-geometry OSWEC (VG-OSWEC) concept studied in this paper is a bottom-hinged, rectangular wave paddle with five flaps of elliptical cross-section embedded into the face of the paddle. System ID tests were conducted on this VG-OSWEC device at a 1:14 scale in a wave basin. Free decay tests showed that the damping was distinctly nonlinear when the flaps were fully open, and the natural frequency increased by 40% when compared with the flaps in a fully closed configuration.

Suggested Citation

  • Choiniere, Michael & Davis, Jacob & Nguyen, Nhu & Tom, Nathan & Fowler, Matthew & Thiagarajan, Krish, 2022. "Hydrodynamics and load shedding behavior of a variable-geometry oscillating surge wave energy converter (OSWEC)," Renewable Energy, Elsevier, vol. 194(C), pages 875-884.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:875-884
    DOI: 10.1016/j.renene.2022.05.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom, N.M. & Lawson, M.J. & Yu, Y.H. & Wright, A.D., 2016. "Development of a nearshore oscillating surge wave energy converter with variable geometry," Renewable Energy, Elsevier, vol. 96(PA), pages 410-424.
    2. Brito, Moisés & Ferreira, Rui M.L. & Teixeira, Luis & Neves, Maria G. & Canelas, Ricardo B., 2020. "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves," Renewable Energy, Elsevier, vol. 151(C), pages 975-992.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grasberger, Jeff & Yang, Lisheng & Bacelli, Giorgio & Zuo, Lei, 2024. "Control co-design and optimization of oscillating-surge wave energy converter," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yao & Mizutani, Norimi & Cho, Yong-Hwan & Nakamura, Tomoaki, 2022. "Performance enhancement of a bottom-hinged oscillating wave surge converter via resonant adjustment," Renewable Energy, Elsevier, vol. 201(P1), pages 624-635.
    2. Kelly, Michael & Tom, Nathan & Yu, Yi-Hsiang & Wright, Alan & Lawson, Michael, 2021. "Annual performance of the second-generation variable-geometry oscillating surge wave energy converter," Renewable Energy, Elsevier, vol. 177(C), pages 242-258.
    3. Cheng, Yong & Li, Gen & Ji, Chunyan & Fan, Tianhui & Zhai, Gangjun, 2020. "Fully nonlinear investigations on performance of an OWSC (oscillating wave surge converter) in 3D (three-dimensional) open water," Energy, Elsevier, vol. 210(C).
    4. Wang, Yize & Liu, Zhenqing, 2021. "Proposal of novel analytical wake model and GPU-accelerated array optimization method for oscillating wave surge energy converter," Renewable Energy, Elsevier, vol. 179(C), pages 563-583.
    5. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
    6. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    7. Shabara, Mohamed A. & Abdelkhalik, Ossama, 2023. "Dynamic modeling of the motions of variable-shape wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Tongphong, Watchara & Kim, Byung-Ha & Kim, In-Cheol & Lee, Young-Ho, 2021. "A study on the design and performance of ModuleRaft wave energy converter," Renewable Energy, Elsevier, vol. 163(C), pages 649-673.
    9. Bubbar, K. & Buckham, B., 2018. "On establishing an analytical power capture limit for self-reacting point absorber wave energy converters based on dynamic response," Applied Energy, Elsevier, vol. 228(C), pages 324-338.
    10. Amini, Erfan & Mehdipour, Hossein & Faraggiana, Emilio & Golbaz, Danial & Mozaffari, Sevda & Bracco, Giovanni & Neshat, Mehdi, 2022. "Optimization of hydraulic power take-off system settings for point absorber wave energy converter," Renewable Energy, Elsevier, vol. 194(C), pages 938-954.
    11. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    12. Calvário, M. & Gaspar, J.F. & Kamarlouei, M. & Hallak, T.S. & Guedes Soares, C., 2020. "Oil-hydraulic power take-off concept for an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 159(C), pages 1297-1309.
    13. Li, Qiaofeng & Mi, Jia & Li, Xiaofan & Chen, Shuo & Jiang, Boxi & Zuo, Lei, 2021. "A self-floating oscillating surge wave energy converter," Energy, Elsevier, vol. 230(C).
    14. Grasberger, Jeff & Yang, Lisheng & Bacelli, Giorgio & Zuo, Lei, 2024. "Control co-design and optimization of oscillating-surge wave energy converter," Renewable Energy, Elsevier, vol. 225(C).
    15. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    16. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:875-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.