IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010309.html
   My bibliography  Save this article

Taguchi method optimization of syngas production via pineapple waste pyrolysis using atmospheric pressure microwave plasma

Author

Listed:
  • Dermawan, Denny
  • Tsai, Da-Wei
  • Yudoyono, Gangsar Satrio
  • You, Sheng-Jie
  • Hsieh, Yen-Kung

Abstract

Pyrolysis of the pineapple waste biomass using an atmospheric pressure microwave plasma ensures satisfactory syngas production as a renewable energy source. The pineapple waste biomass samples used in the study were crowned and peeled in dry and wet conditions. The study used Taguchi experimental methods to find the optimum parameters for the experiment. Material mass was the most influential parameter, followed by input power, carrier gas flow, and material type. Increasing input power can reduce carbon dioxide emissions while increasing the production of carbon monoxide and hydrogen. The syngas production with 800 and 1000 W power peaked for 6 and 7 min, respectively, while the plasma with 1200 power peaked at 5 min. The wet pineapple waste sample with 1200 W had the highest syngas molar ratio (H2/CO) output, the wet peel sample reached 4.18, and the wet crown sample reached 4.00. The dry sample had a lower ratio, with only 2.43 for the pineapple peel and 2.42 for the pineapple crown. The highest energy efficiency of biomass conversion is 72.59 %, achieved by a dry crown sample with 1000 W, followed by a dry crown sample with 1200 W power of 72.01 % efficiency. This finding shows that pineapple waste can be a viable feedstock in syngas production using an atmospheric pressure microwave plasma system with a rapid pyrolysis process and without catalyst added. It contributes to producing renewable energy and sustainable agricultural practices, reducing the environmental impact of conventional waste disposal methods, chemical costs, and carbon emissions to the environment.

Suggested Citation

  • Dermawan, Denny & Tsai, Da-Wei & Yudoyono, Gangsar Satrio & You, Sheng-Jie & Hsieh, Yen-Kung, 2024. "Taguchi method optimization of syngas production via pineapple waste pyrolysis using atmospheric pressure microwave plasma," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010309
    DOI: 10.1016/j.renene.2024.120962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.