IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009972.html
   My bibliography  Save this article

Evaluating the quality of wood waste pellets and environmental impact mitigation for decentralized energy recovery in the Amazon

Author

Listed:
  • Sá, Isabella A.
  • Macedo, Lucélia A.
  • Sant’Anna Chaves, Bruno
  • Galvão, Luiz Gustavo O.
  • Vale, Ailton Teixeira
  • Ghesti, Grace F.
  • de Paula Protásio, Thiago
  • Rodrigues, Juliana Sabino
  • Lamas, Giulia Cruz
  • Silveira, Edgar A.

Abstract

This study explores the integration of legal timber harvesting and conservation efforts in the Amazon, repurposing wood processing waste into biofuel through pelletization to meet environmental standards and reduce diesel dependence in isolated systems. The research focuses on pellets derived from six Amazonian species managed sustainably: Peltogyne lecointei (S1), Erisma uncinatum (S2), Martiodendron elatum (S3), Handroanthus incanus (S4), Dipteryx odorata (S5), and Allantoma decandra (S6). Four blends (B1: S5 and S6; B2: all species; B3: S1, S3, S4 and S5; B4: S2 and S6) with different species combinations are pelleted at 8 % and 10 % moisture content. Pellet characteristics are compared with ISO 17225-2 standards [1], including calorific value, bulk density, water content, dimensions, ash content, mechanical durability, and fines. Although blends B1, B2, and B3 meet A1-criteria, none achieve the required 96.5 % mechanical durability. B3, pelleted with 10 % moisture content, exhibits the highest durability (90.4 %). Pelletization enhanced the bioenergy density by 255 % and showed a bioenergy index up to 12.50 GJ m−3. The produced pellets reported a potential CO2 emissions mitigation of up to 1259.38 kgCO2eq by replacing diesel fuel. However, the blends do not meet the sulfur (>0.05 %) content requirement for industrial and domestic applications, deserving further investigation into pre-treatment.

Suggested Citation

  • Sá, Isabella A. & Macedo, Lucélia A. & Sant’Anna Chaves, Bruno & Galvão, Luiz Gustavo O. & Vale, Ailton Teixeira & Ghesti, Grace F. & de Paula Protásio, Thiago & Rodrigues, Juliana Sabino & Lamas, Giu, 2024. "Evaluating the quality of wood waste pellets and environmental impact mitigation for decentralized energy recovery in the Amazon," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009972
    DOI: 10.1016/j.renene.2024.120929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    2. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    3. Lima, Michael Douglas Roque & Ramalho, Fernanda Maria Guedes & Trugilho, Paulo Fernando & Bufalino, Lina & Dias Júnior, Ananias Francisco & Protásio, Thiago de Paula & Hein, Paulo Ricardo Gherardi, 2022. "Classifying waste wood from Amazonian species by near-infrared spectroscopy (NIRS) to improve charcoal production," Renewable Energy, Elsevier, vol. 193(C), pages 584-594.
    4. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    5. Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & Domenico, Michele Di & da Silva Filho, Valdemar Francisco & de Sena, Rennio Felix & Machado, Ricardo Antonio F, 2020. "Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 1328-1338.
    6. Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
    7. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    8. Brand, Martha Andreia & Jacinto, Rodolfo Cardoso, 2020. "Apple pruning residues: Potential for burning in boiler systems and pellet production," Renewable Energy, Elsevier, vol. 152(C), pages 458-466.
    9. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Elizângela Silva Luz & Álvaro Augusto Vieira Soares & Selma Lopes Goulart & Amélia Guimarães Carvalho & Thiago Campos Monteiro & Thiago Paula Protásio, 2021. "Challenges of the lumber production in the Amazon region: relation between sustainability of sawmills, process yield and logs quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4924-4948, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    2. Bhattacharya, Raikamal & Arora, Sidharth & Ghosh, Sanjoy, 2022. "Utilization of waste pine needles for the production of cellulolytic enzymes in a solid state fermentation bioreactor and high calorific value fuel pellets from fermented residue: Towards a biorefiner," Renewable Energy, Elsevier, vol. 195(C), pages 1064-1076.
    3. Solarte-Toro, Juan Camilo & González-Aguirre, Jose Andrés & Poveda Giraldo, Jhonny Alejandro & Cardona Alzate, Carlos A., 2021. "Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Pegoretti Leite de Souza, Hector Jesus & Muñoz, Fernando & Mendonça, Regis Teixeira & Sáez, Katia & Olave, Rodrigo & Segura, Cristina & de Souza, Daniel P.L. & de Paula Protásio, Thiago & Rodríguez-So, 2021. "Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass," Renewable Energy, Elsevier, vol. 163(C), pages 1802-1816.
    5. Dao, Cuong N. & Salam, Abdul & Kim Oanh, Nguyen Thi & Tabil, Lope G., 2022. "Effects of length-to-diameter ratio, pinewood sawdust, and sodium lignosulfonate on quality of rice straw pellets produced via a flat die pellet mill," Renewable Energy, Elsevier, vol. 181(C), pages 1140-1154.
    6. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    8. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    9. Abdulmumini, Murtala M. & Zigan, Stefan & Bradley, Michael S.A. & Lestander, Torbjörn A., 2020. "Fuel pellet breakage in pneumatic transport and durability tests," Renewable Energy, Elsevier, vol. 157(C), pages 911-919.
    10. Espinoza-Monje, J. Flavio & Garcés, Hugo O. & Díaz, Juan & Adam, Roman & Lazo, Jorge & Muñoz, Robinson & Coronado, Matías & Saiz, Gustavo & Azócar, Laura, 2024. "Investigating the properties of shrub biomass pellets through additive and sawdust admixing," Renewable Energy, Elsevier, vol. 229(C).
    11. Miloš Pavelek & Marek Prajer & Kamil Trgala, 2018. "Static and Dynamic Thermal Characterization of Timber Frame/Wheat ( Triticum Aestivum ) Chaff Thermal Insulation Panel for Sustainable Building Construction," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    12. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    13. Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).
    14. Setter, C. & Oliveira, T.J.P., 2022. "Evaluation of the physical-mechanical and energy properties of coffee husk briquettes with kraft lignin during slow pyrolysis," Renewable Energy, Elsevier, vol. 189(C), pages 1007-1019.
    15. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    16. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    17. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    18. Adam, Roman & Yiyang, Deng & Kruggel-Emden, Harald & Zeng, Thomas & Lenz, Volker, 2024. "Influence of pressure and retention time on briquette volume and raw density during biomass densification with an industrial stamp briquetting machine," Renewable Energy, Elsevier, vol. 229(C).
    19. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    20. Czekała, Wojciech & Bartnikowska, Sylwia & Dach, Jacek & Janczak, Damian & Smurzyńska, Anna & Kozłowski, Kamil & Bugała, Artur & Lewicki, Andrzej & Cieślik, Marta & Typańska, Dorota & Mazurkiewicz, Ja, 2018. "The energy value and economic efficiency of solid biofuels produced from digestate and sawdust," Energy, Elsevier, vol. 159(C), pages 1118-1122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.