Apple pruning residues: Potential for burning in boiler systems and pellet production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.01.037
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nakomcic-Smaragdakis, Branka & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis of solid biomass energy potential in Autonomous Province of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 186-191.
- Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
- Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2012. "Portuguese pellets market: Analysis of the production and utilization constrains," Energy Policy, Elsevier, vol. 42(C), pages 129-135.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- José Alberto Soria-González & Raúl Tauro & José Juan Alvarado-Flores & Víctor Manuel Berrueta-Soriano & José Guadalupe Rutiaga-Quiñones, 2022. "Avocado Tree Pruning Pellets ( Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation," Energies, MDPI, vol. 15(20), pages 1-18, October.
- Alessio Ilari & Ester Foppa Pedretti & Carmine De Francesco & Daniele Duca, 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability," Resources, MDPI, vol. 10(12), pages 1-12, December.
- Bhattacharya, Raikamal & Arora, Sidharth & Ghosh, Sanjoy, 2022. "Utilization of waste pine needles for the production of cellulolytic enzymes in a solid state fermentation bioreactor and high calorific value fuel pellets from fermented residue: Towards a biorefiner," Renewable Energy, Elsevier, vol. 195(C), pages 1064-1076.
- Emmanuel Blancarte-Contreras & Sacramento Corral-Rivas & Tilo Gustavo Domínguez-Gómez & José Encarnación Lujan-Soto & José Rodolfo Goche-Télles & Eusebio Montiel-Antuna, 2022. "Improving the Physical, Mechanical and Energetic Characteristics of Pine Sawdust by the Addition of up to 40% Agave durangensis Gentry Pellets," Energies, MDPI, vol. 15(10), pages 1-12, May.
- A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
- Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nunes, João & Freitas, Helena, 2016. "An indicator to assess the pellet production per forest area. A case-study from Portugal," Forest Policy and Economics, Elsevier, vol. 70(C), pages 99-105.
- Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
- Judl, Jáchym & Koskela, Sirkka & Korpela, Timo & Karvosenoja, Niko & Häyrinen, Anna & Rantsi, Jari, 2014. "Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland," Energy, Elsevier, vol. 77(C), pages 844-851.
- Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
- Małgorzata Dula & Artur Kraszkiewicz & Stanisław Parafiniuk, 2024. "Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber," Energies, MDPI, vol. 17(12), pages 1-20, June.
- Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
- Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
- Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
- Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
- Magdalena Kachel & Artur Kraszkiewicz & Alaa Subr & Stanisław Parafiniuk & Artur Przywara & Milan Koszel & Grzegorz Zając, 2020. "Impact of the Type of Fertilization and the Addition of Glycerol on the Quality of Spring Rape Straw Pellets," Energies, MDPI, vol. 13(4), pages 1-11, February.
- Mohr, Lukas & Burg, Vanessa & Thees, Oliver & Trutnevyte, Evelina, 2019. "Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland," Renewable Energy, Elsevier, vol. 140(C), pages 840-851.
- Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.
- Kalvis Kons & Boško Blagojević & Blas Mola-Yudego & Robert Prinz & Johanna Routa & Biljana Kulisic & Bruno Gagnon & Dan Bergström, 2022. "Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks," Energies, MDPI, vol. 15(10), pages 1-22, May.
- Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015.
"Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis,"
Energy Policy, Elsevier, vol. 81(C), pages 106-116.
- Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, E. Wetzstein, 2014. "Assessing the feasibility of cofiring wood pellets with coal for electricity generation: A real option analysis," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162484, Southern Agricultural Economics Association.
- Ramos-Hernández, Rocío & Sánchez-Ramírez, Cuauhtémoc & Mota-López, Dulce Rocio & Sandoval-Salas, Fabiola & García-Alcaraz, Jorge Luis, 2021. "Evaluation of bioenergy potential from coffee pulp trough System Dynamics," Renewable Energy, Elsevier, vol. 165(P1), pages 863-877.
- Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
- Leonel J. R. Nunes & Margarida Casau & Marta Ferreira Dias, 2021. "Portuguese Wood Pellets Market: Organization, Production and Consumption Analysis," Resources, MDPI, vol. 10(12), pages 1-24, December.
- Kristöfel, Christa & Strasser, Christoph & Schmid, Erwin & Morawetz, Ulrich B., 2016. "The wood pellet market in Austria: A structural market model analysis," Energy Policy, Elsevier, vol. 88(C), pages 402-412.
- Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
- Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
More about this item
Keywords
Apple growing; Pinus sp.; Biomass for energy; ISO 17225–2;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:458-466. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.