IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics096014812300842x.html
   My bibliography  Save this article

Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system

Author

Listed:
  • Abdullahi Shagali, Abdulmajid
  • Hu, Song
  • Li, Hanjian
  • He, Limo
  • Han, Hengda
  • Chi, Huanying
  • Qing, Haoran
  • Xu, Jun
  • Jiang, Long
  • Wang, Yi
  • Su, Sheng
  • Xiang, Jun

Abstract

Co-pyrolysis of lignocellulosic biomass (LCB) with plastic has gained significant attention recently. Studying the pyrolysis kinetic behavior of LCB and plastic is beneficial for developing a framework for designing and improving biofuel production. The co-pyrolysis behavior, synergistic interactions and kinetic triplet parameters of the three main LCB components, i.e., cellulose, hemicellulose and lignin, and two plastics (polyethylene terephthalate [PET] and polyvinyl chloride [PVC]) were evaluated using a fast heating concentrating photothermal TGA system. The maximum decrease in mass loss rate with increasing heating rates was observed for cellulose with PET (1.23–0.94%/°C) and with PVC (1.05–0.62%/°C). The mechanism of synergistic interaction between hemicellulose and PET proceeded with polymer degradation and conversions of monomer units into excess volatiles in the higher heating rate regime. Distributed Activation Energy Model [DAEM] and Coats-Redfern [CR]) were used to calculate the kinetic parameters. DAEM results confirmed that mixed samples required lower activation energy to start the reaction. Using the CR method, the first degradation phase showed the best synergistic effect for lowering the PET and PVC activation energy, particularly with hemicellulose and lignin.

Suggested Citation

  • Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300842x
    DOI: 10.1016/j.renene.2023.118936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300842X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Linghui & Shen, Boxiong & Xu, Huan & Li, Fukuan & Wang, Yinyin & Singh, Surjit, 2016. "Thermal behavior of waste tea pyrolysis by TG-FTIR analysis," Energy, Elsevier, vol. 103(C), pages 533-542.
    2. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    3. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    4. Hong, Dikun & Gao, Peng & Wang, Chunbo, 2022. "A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal," Energy, Elsevier, vol. 239(PC).
    5. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Farissi, Hammadi & Talhaoui, Abdelmonaem & EL Bachiri, Ali, 2023. "Cistus shells used as a sustainable matrix for bioenergy production through slow pyrolysis process: Kinetic and thermodynamic study," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    2. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
    3. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    5. Chen, Yubo & Yang, Zhao & Lv, Zijian & Zhang, Yong & Li, Jie & Fei, Teng, 2023. "Combustion mechanism and product characteristics of 2,3,3,3-tetrafluoropropene as an environmentally friendly working fluid for organic Rankine cycle," Energy, Elsevier, vol. 268(C).
    6. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    7. Ge, Lichao & Zhao, Can & Chen, Simo & Li, Qian & Zhou, Tianhong & Jiang, Han & Li, Xi & Wang, Yang & Xu, Chang, 2022. "An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon," Energy, Elsevier, vol. 257(C).
    8. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    9. Gao, Qi & Ni, Liangmeng & He, Yuyu & Hou, Yanmei & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells," Energy, Elsevier, vol. 247(C).
    10. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    11. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    12. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    13. Jiang, Yuan & Zong, Peijie & Tian, Bin & Ming, Xue & Xu, Fanfan & Tian, Yuanyu & Qiao, Yingyun & Li, Dawei & Song, Qingshuo & Yu, Qiankun, 2021. "Pyrolysis of coal group component. Part Ⅰ. Emission characteristics and product distribution of saturate component," Energy, Elsevier, vol. 216(C).
    14. Guo, Guanlun & Fan, Kang & Guo, Ziqing & Guo, Wei, 2023. "Pyrolysis behavior of automotive polypropylene plastics: ReaxFF molecular dynamics study on the co-pyrolysis of polypropylene and EPDM/POE," Energy, Elsevier, vol. 280(C).
    15. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    16. Julia Karaeva & Svetlana Timofeeva & Marat Gilfanov & Marina Slobozhaninova & Olga Sidorkina & Ekaterina Luchkina & Vladimir Panchenko & Vadim Bolshev, 2023. "Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    17. Luo, Wei & Hu, Qing & Fan, Zhong-yi & Wan, Jun & He, Qian & Huang, Sheng-xiong & Zhou, Nan & Song, Min & Zhang, Jia-chao & Zhou, Zhi, 2020. "The effect of different particle sizes and HCl-modified kaolin on catalytic pyrolysis characteristics of reworked polypropylene plastics," Energy, Elsevier, vol. 213(C).
    18. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    19. Fonseca, Frederico G. & Soares Dias, Ana P., 2021. "Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics," Renewable Energy, Elsevier, vol. 180(C), pages 1380-1390.
    20. Ding, Yanming & Huang, Biqing & Wu, Chuanbao & He, Qize & Lu, Kaihua, 2019. "Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis," Energy, Elsevier, vol. 181(C), pages 11-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300842x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.