IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124008735.html
   My bibliography  Save this article

Predicting calorific value and ash content of sand shrub using Vis-NIR spectra and various chemometrics

Author

Listed:
  • Li, Ying
  • Xu, Haokai
  • Lan, Xiaozhen
  • Wang, Jixuan
  • Su, Xiaoming
  • Bai, Xiaoping
  • Via, Brian K.
  • Pei, Zhiyong

Abstract

Calorific value (CV) reflects the ability of material flow and energy conversion of plants, which is the key indices of combustion properties for utilization and development of energy plants. However, the commonly used method for CV determination of solid fuels is bomb calorimetry in the laboratory using powder samples, which hinders the capability of rapid and non-destructive prediction for a large-scale samples in a natural environment. Visible and near infrared spectroscopy (Vis-NIR) has been widely proposed as a replace for laboratory determination in properties prediction. However, chemometrics are essential for spectral analysis. Various chemometrics including competitive adaptive reweighted sample (CARS), lifting wavelet transform (LWT), successive projections algorithm (SPA), and convolutional neural networks (CNNs) optimized by whale optimization algorithm (WOA) were employed to optimize models. Additionally, canopy spectra were measured in the field instead of powder samples’ spectra collecting from laboratory. The results demonstrated that CARS-WOA-CNN was the best to predict CV and ash content (AC) with R2 of 0.858 and 0.751, respectively. Compared to raw full spectra, spectral dimension was reduced from 2048 to 93 and 22 for CV and AC, respectively. Overall, this study provided a meaningful strategy for harvest planning and assessing value of biomass in the field.

Suggested Citation

  • Li, Ying & Xu, Haokai & Lan, Xiaozhen & Wang, Jixuan & Su, Xiaoming & Bai, Xiaoping & Via, Brian K. & Pei, Zhiyong, 2024. "Predicting calorific value and ash content of sand shrub using Vis-NIR spectra and various chemometrics," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008735
    DOI: 10.1016/j.renene.2024.120805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Mancini, M. & Rinnan, Å., 2021. "Near infrared technique as a tool for the rapid assessment of waste wood quality for energy applications," Renewable Energy, Elsevier, vol. 177(C), pages 113-123.
    3. Vasiliki Kamperidou, 2022. "Quality Analysis of Commercially Available Wood Pellets and Correlations between Pellets Characteristics," Energies, MDPI, vol. 15(8), pages 1-20, April.
    4. Laimon, M. & Yusaf, T., 2024. "Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system," Renewable Energy, Elsevier, vol. 222(C).
    5. Tagami-Kanada, Nami & Yoshikuni, Koji & Mizuno, Satoru & Sawai, Toru & Fuchihata, Manabu & Ida, Tamio, 2022. "Combustion characteristics of densified solid biofuel with different aspect ratios," Renewable Energy, Elsevier, vol. 197(C), pages 1174-1182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lima, Michael Douglas Roque & Ramalho, Fernanda Maria Guedes & Trugilho, Paulo Fernando & Bufalino, Lina & Dias Júnior, Ananias Francisco & Protásio, Thiago de Paula & Hein, Paulo Ricardo Gherardi, 2022. "Classifying waste wood from Amazonian species by near-infrared spectroscopy (NIRS) to improve charcoal production," Renewable Energy, Elsevier, vol. 193(C), pages 584-594.
    2. Bartosz Choiński & Ewa Szatyłowicz & Izabela Zgłobicka & Magdalena Joka Ylidiz, 2022. "A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO 2 Emission," Energies, MDPI, vol. 16(1), pages 1-13, December.
    3. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    4. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    5. Zhao, Chuandang & Wang, Fengjuan & Xu, Jiuping & Tan, Cheng & Østergaard, Poul Alberg, 2024. "Optimal planning and operation for a grid-connected solar–wind–hydro energy system in wastewater treatment plants," Renewable Energy, Elsevier, vol. 230(C).
    6. Piyarath Saosee & Boonrod Sajjakulnukit & Shabbir H. Gheewala, 2020. "Feedstock Security Analysis for Wood Pellet Production in Thailand," Energies, MDPI, vol. 13(19), pages 1-14, October.
    7. John Nyandansobi Simon & Narissara Nuthammachot & Kuaanan Techato & Kingsley Ezechukwu Okpara & Sittiporn Channumsin & Rungnapa Kaewthongrach & Md. Sujahangir Kabir Sarkar, 2022. "Para Rubber ( Hevea brasiliensis ) Feedstock for Livelihoods Opportunities in Southern Thailand: Analysis of Socioeconomic Productivity Potentials and Security," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    8. Xie, Rui & Chen, Zhengjie & Ma, Wenhui & Wang, Xiaoyue & Gan, Xiaowei & Tao, Chenggang & Qu, Junyu, 2024. "High efficient and clean utilization of renewable energy for the process of industrial silicon," Renewable Energy, Elsevier, vol. 231(C).
    9. Yang, Yuyan & Xu, Xiao & Luo, Yichen & Liu, Junyong & Hu, Weihao, 2024. "Distributionally robust planning method for expressway hydrogen refueling station powered by a wind-PV system," Renewable Energy, Elsevier, vol. 225(C).
    10. Roksana Muzyka & Sebastian Werle & Marcin Sajdak, 2024. "Determination of Plastic Pollutants in Solid Biofuels," Energies, MDPI, vol. 17(23), pages 1-13, November.
    11. Dmitry V. Boguslavsky & Konstantin S. Sharov & Natalia P. Sharova, 2022. "Using Alternative Sources of Energy for Decarbonization: A Piece of Cake, but How to Cook This Cake?," IJERPH, MDPI, vol. 19(23), pages 1-30, December.
    12. Khalid, Muhammad, 2024. "A techno-economic framework for optimizing multi-area power dispatch in microgrids with tie-line constraints," Renewable Energy, Elsevier, vol. 231(C).
    13. Zhao, Huirong & Yao, Yuqi & Peng, Daogang & Zhao, Peixi, 2024. "A preference adjustable capacity configuration optimization method for hydrogen-containing integrated energy system considering dynamic energy efficiency improvement and load fast tracking," Renewable Energy, Elsevier, vol. 235(C).
    14. Li, Cong & Xu, Zixuan & Wang, Yuqing & Xu, Wenbo & Yang, Rui & Zhang, Hui, 2023. "Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source," Energy, Elsevier, vol. 265(C).
    15. Bo Peng & Yunguo Li & Hengyang Liu & Ping Kang & Yang Bai & Jianyong Zhao & Heng Nian, 2024. "Design of Energy Management Strategy for Integrated Energy System Including Multi-Component Electric–Thermal–Hydrogen Energy Storage," Energies, MDPI, vol. 17(23), pages 1-16, December.
    16. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    17. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    18. Yang, Yuyan & Xu, Xiao & Luo, Yichen & Xu, Lixiong & Liu, Junyong & Hu, Weihao, 2024. "Human-safe and economic operation of renewable hydrogen-based microgrids under plateau conditions," Renewable Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.