IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006244.html
   My bibliography  Save this article

Experimental and numerical studies on a passively deformed coupled-pitching hydrofoil under the semi-activated mode

Author

Listed:
  • Liu, Zhen
  • Qu, Hengliang
  • Song, Xinyu

Abstract

Flexibility is expected to positively affect the hydrodynamic and energy-harvesting performance of deformable hydrofoils, which have a simple structure and can be easily implemented in practical engineering applications. However, the characteristics of the fluid-structure interaction and power capturing are complicated. In this study, to reveal the fluid-structure interaction (FSI) mechanism and the effects of the passive deformation on the energy-harvesting performance, a flexible hydrofoil to conduct a coupled-pitching motion under the semi-activated mode was proposed and investigated experimentally and numerically. In the experimental study, a deformation-measuring technology based on a digital imaging algorithm was developed and employed for water channel tests. The effects of the hydrofoil profile and activated pitching amplitude on the deformation status, torque output, and energy-harvesting performance were studied experimentally. In the numerical study, a three-dimensional unsteady two-way FSI model was established and validated using experimental results. The influence mechanisms of the damping torque coefficient, activated pitching amplitude, and elasticity modulus on the passive deformation, its phase difference with the activated pitching angle, and the hydrodynamic and energy-harvesting performances were studied. Compared with the rigid hydrofoil, the energy-harvesting efficiency and power coefficient of the passively deformable hydrofoil could be increased by 4.8 % and 8.0 %, respectively, as the phase difference zone was close to 3π/4. In addition, positive and negative phase difference zones for performance enhancement were identified, which provides a future direction for optimizing flexible hydrofoils and control strategies.

Suggested Citation

  • Liu, Zhen & Qu, Hengliang & Song, Xinyu, 2024. "Experimental and numerical studies on a passively deformed coupled-pitching hydrofoil under the semi-activated mode," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006244
    DOI: 10.1016/j.renene.2024.120559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2019. "Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization," Energy, Elsevier, vol. 167(C), pages 841-852.
    2. Liu, Zhen & Qu, Hengliang & Zhang, Guoliang, 2020. "Experimental and numerical investigations of a coupled-pitching hydrofoil under the fully-activated mode," Renewable Energy, Elsevier, vol. 155(C), pages 432-446.
    3. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    4. Siala, Firas F. & Liburdy, James A., 2020. "Power estimation of flapping foil energy harvesters using vortex impulse theory," Renewable Energy, Elsevier, vol. 154(C), pages 894-902.
    5. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    6. Wang, Ying & Tong, Hui & Sima, Hao & Wang, Jiayue & Sun, Jinjing & Huang, Diangui, 2019. "Experimental study on aerodynamic performance of deformable blade for vertical axis wind turbine," Energy, Elsevier, vol. 181(C), pages 187-201.
    7. Hao, Wenxing & Li, Chun, 2020. "Performance improvement of adaptive flap on flow separation control and its effect on VAWT," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Qu, Hengliang, 2022. "Numerical study on a coupled-pitching flexible hydrofoil under the semi-passive mode," Renewable Energy, Elsevier, vol. 189(C), pages 339-358.
    2. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    3. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    4. Zhang, Yongkuang & Zhou, Yu & Chen, Weixing & Zhang, Weidong & Gao, Feng, 2022. "Design, modeling and numerical analysis of a WEC-Glider (WEG)," Renewable Energy, Elsevier, vol. 188(C), pages 911-921.
    5. Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
    6. Yang, Yaru & Li, Hua & Yao, Jin & Gao, Wenxiang, 2019. "Research on the characteristic parameters and rotor layout principle of dual-rotor horizontal axis wind turbine," Energy, Elsevier, vol. 189(C).
    7. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    8. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Hui Tong & Jian Fang & Jinyang Guo & Kun Lin & Ying Wang, 2019. "Numerical Simulation of Unsteady Aerodynamic Performance of Novel Adaptive Airfoil for Vertical Axis Wind Turbine," Energies, MDPI, vol. 12(21), pages 1-27, October.
    10. Farzadi, Ramin & Bazargan, Majid, 2023. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode," Energy, Elsevier, vol. 278(PB).
    11. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    12. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    13. Shen, Zhuang & Gong, Shuguang & Zu, Hongxiao & Guo, Weiyu, 2024. "Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM," Energy, Elsevier, vol. 299(C).
    14. Tong, Hui & Wang, Ying, 2021. "Experimental study on unsteady aerodynamic characteristics of deformed blades for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 173(C), pages 808-826.
    15. Ma, Penglei & Wang, Yong & Xie, Yudong & Liu, Guijie, 2021. "Behaviors of two semi-passive oscillating hydrofoils with a tandem configuration," Energy, Elsevier, vol. 214(C).
    16. Leonczuk Minetto, Robert Alexis & Paraschivoiu, Marius, 2020. "Simulation based analysis of morphing blades applied to a vertical axis wind turbine," Energy, Elsevier, vol. 202(C).
    17. Chen, Yaoran & Su, Jie & Han, Zhaolong & Zhao, Yongsheng & Zhou, Dai & Yang, He & Bao, Yan & Lei, Hang, 2020. "A shape optimization of ϕ-shape Darrieus wind turbine under a given range of inlet wind speed," Renewable Energy, Elsevier, vol. 159(C), pages 286-299.
    18. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    19. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    20. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.