IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp911-921.html
   My bibliography  Save this article

Design, modeling and numerical analysis of a WEC-Glider (WEG)

Author

Listed:
  • Zhang, Yongkuang
  • Zhou, Yu
  • Chen, Weixing
  • Zhang, Weidong
  • Gao, Feng

Abstract

Wave Glider is an unmanned autonomous vehicle fully powered by renewable energy, which converts wave energy into thrust and converts solar energy into power for electronic devices. It is extensively applied in large-scale, long-term ocean observation. However, photovoltaic power generation capacity of Wave Glider is relatively weak (continuous power available to payloads: 10 Watts), which limits the sensing and communication ability of Wave Glider. This paper presents a Wave Glider with a WEC called WEC-Glider scheme, i.e., the fluctuating tension of umbilical drives the slider to do a reciprocating movement, and then the slider drives the ball screw to spin the generator. The WEC-Glider is capable of converting wave energy into electricity as well as propulsion. Based on Fossen's equation, the 6-DOF dynamic models are established. A numerical model is established via Matlab/Simulink, to simulate the dynamic response with different parameters. The numerical results show that the proposed WEC-Glider can achieve 34 Watts power generation under the given regular waves. In the future, the WEC-glider could be used in the oceanographic observation to cope with insufficient photovoltaic power generation of the traditional Wave Glider, especially on continuous cloudy days or in high latitude region.

Suggested Citation

  • Zhang, Yongkuang & Zhou, Yu & Chen, Weixing & Zhang, Weidong & Gao, Feng, 2022. "Design, modeling and numerical analysis of a WEC-Glider (WEG)," Renewable Energy, Elsevier, vol. 188(C), pages 911-921.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:911-921
    DOI: 10.1016/j.renene.2022.02.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200252X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shadman, Milad & Estefen, Segen F. & Rodriguez, Claudio A. & Nogueira, Izabel C.M., 2018. "A geometrical optimization method applied to a heaving point absorber wave energy converter," Renewable Energy, Elsevier, vol. 115(C), pages 533-546.
    2. Liu, Zhen & Qu, Hengliang & Zhang, Guoliang, 2020. "Experimental and numerical investigations of a coupled-pitching hydrofoil under the fully-activated mode," Renewable Energy, Elsevier, vol. 155(C), pages 432-446.
    3. López, I. & Carballo, R. & Taveira-Pinto, F. & Iglesias, G., 2020. "Sensitivity of OWC performance to air compressibility," Renewable Energy, Elsevier, vol. 145(C), pages 1334-1347.
    4. Liang, Changwei & Zuo, Lei, 2017. "On the dynamics and design of a two-body wave energy converter," Renewable Energy, Elsevier, vol. 101(C), pages 265-274.
    5. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    6. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    7. Lahooti, Mohsen & Kim, Daegyoum, 2019. "Multi-body interaction effect on the energy harvesting performance of a flapping hydrofoil," Renewable Energy, Elsevier, vol. 130(C), pages 460-473.
    8. Malinowski, M. & Kazmierkowski, M.P. & Trzynadlowski, A., 2003. "Review and comparative study of control techniques for three-phase PWM rectifiers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(3), pages 349-361.
    9. Wang, Lin & Kolios, Athanasios & Cui, Lin & Sheng, Qihu, 2018. "Flexible multibody dynamics modelling of point-absorber wave energy converters," Renewable Energy, Elsevier, vol. 127(C), pages 790-801.
    10. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2019. "Numerical investigation into power extraction by a fully passive oscillating foil with double generators," Renewable Energy, Elsevier, vol. 133(C), pages 32-43.
    11. Kofoed, Jens Peter & Frigaard, Peter & Friis-Madsen, Erik & Sørensen, Hans Chr., 2006. "Prototype testing of the wave energy converter wave dragon," Renewable Energy, Elsevier, vol. 31(2), pages 181-189.
    12. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
    2. Zhang, Yongkuang & Han, Xinyang & Hu, Yuxuan & Chen, Xihan & Li, Zhuohang & Gao, Feng & Chen, Weixing, 2024. "Dual-function flapping hydrofoil: Energy capture and propulsion in ocean waves," Renewable Energy, Elsevier, vol. 222(C).
    3. Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
    4. Chen, Weixing & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2023. "A bio-inspired foldable-wing wave energy converter for ocean robots," Applied Energy, Elsevier, vol. 334(C).
    5. Zhang, Yongkuang & Feng, Yongjun & Chen, Weixing & Gao, Feng, 2022. "Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).
    2. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    3. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    4. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    5. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    6. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    7. Roy, Sanjoy, 2023. "Short duration performance of floating heave buoy WEC in the Lakshadweep Sea," Renewable Energy, Elsevier, vol. 202(C), pages 1148-1159.
    8. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    9. Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
    10. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    11. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    12. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    13. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    14. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    15. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    16. Addy Wahyudie & Tri Bagus Susilo & Fatima Alaryani & Cuk Supriyadi Ali Nandar & Mohammed Abdi Jama & Abdulrahman Daher & Hussain Shareef, 2020. "Wave Power Assessment in the Middle Part of the Southern Coast of Java Island," Energies, MDPI, vol. 13(10), pages 1-19, May.
    17. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    18. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    19. Filianoti, Pasquale & Camporeale, Sergio M., 2008. "A linearized model for estimating the performance of submerged resonant wave energy converters," Renewable Energy, Elsevier, vol. 33(4), pages 631-641.
    20. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:911-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.