IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223014342.html
   My bibliography  Save this article

3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode

Author

Listed:
  • Farzadi, Ramin
  • Bazargan, Majid

Abstract

A comprehensive three-dimensional numerical analysis is applied in this study to evaluate the competence of the J-type blades in the vertical axis wind turbines under wide range of operating conditions including various wind speeds, tip speed ratios and wind turbulence intensities. It is found that the vortices which are encapsulated in the concave part of the J-type blades escape from the tips of the blades and become stronger than those originated from the straight blades. Such strong wakes behind the J-type blades are responsible for larger negative effects on generating the torque at high tip speed ratios. Neither of the wind speed, nor the wind turbulence intensity have significant effects on performance of the J-type blade turbines. Of particular interest is to discover the behavior of the J-type blade under self-starting conditions which is a major shortcoming with Darrieus turbines. The results show that replacing the straight blades with the J-type blades causes the generated torque to increase by 26.9% and 37.6% at the wind speeds of 10 m/s and 5 m/s, respectively. Better performance of the J-type blades under self-starting conditions, makes them a promising candidate, especially at low wind speed regions such as urban areas.

Suggested Citation

  • Farzadi, Ramin & Bazargan, Majid, 2023. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014342
    DOI: 10.1016/j.energy.2023.128040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    2. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    3. Palanisamy Mohan Kumar & Krishnamoorthi Sivalingam & Teik-Cheng Lim & Seeram Ramakrishna & He Wei, 2019. "Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine—Part 1," Clean Technol., MDPI, vol. 1(1), pages 1-20, August.
    4. Zamani, Mahdi & Maghrebi, Mohammad Javad & Varedi, Seyed Rasoul, 2016. "Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation," Renewable Energy, Elsevier, vol. 95(C), pages 109-126.
    5. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    6. Antonio García Auyanet & Rangga E. Santoso & Hrishikesh Mohan & Sanvay S. Rathore & Debapriya Chakraborty & Patrick G. Verdin, 2022. "CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    7. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    8. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2019. "Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization," Energy, Elsevier, vol. 167(C), pages 841-852.
    10. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Maaloul, Makram & Abid, Mohamed Salah, 2016. "Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel," Energy, Elsevier, vol. 113(C), pages 894-908.
    11. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    12. Shukla, Vivek & Kaviti, Ajay Kumar, 2017. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, Elsevier, vol. 126(C), pages 766-795.
    13. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    14. Antonio García Auyanet & Patrick G. Verdin, 2022. "Numerical Study of the Effect of Flap Geometry in a Multi-Slot Ducted Wind Turbine," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    15. Belabes, Belkacem & Paraschivoiu, Marius, 2021. "Numerical study of the effect of turbulence intensity on VAWT performance," Energy, Elsevier, vol. 233(C).
    16. Gupta, R. & Biswas, A. & Sharma, K.K., 2008. "Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor," Renewable Energy, Elsevier, vol. 33(9), pages 1974-1981.
    17. Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation," Energy, Elsevier, vol. 248(C).
    18. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.
    19. Mohamed, M.H., 2019. "Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment," Energy, Elsevier, vol. 177(C), pages 367-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    2. Antonio García Auyanet & Rangga E. Santoso & Hrishikesh Mohan & Sanvay S. Rathore & Debapriya Chakraborty & Patrick G. Verdin, 2022. "CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    3. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    4. Zamani, Mahdi & Nazari, Saeed & Moshizi, Sajad A. & Maghrebi, Mohammad Javad, 2016. "Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 116(P1), pages 1243-1255.
    5. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    7. Chenguang Song & Guoqing Wu & Weinan Zhu & Xudong Zhang & Jicong Zhao, 2019. "Numerical Investigation on the Effects of Airfoil Leading Edge Radius on the Aerodynamic Performance of H-Rotor Darrieus Vertical Axis Wind Turbine," Energies, MDPI, vol. 12(19), pages 1-14, October.
    8. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    9. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    10. Mohamed, M.H., 2019. "Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment," Energy, Elsevier, vol. 177(C), pages 367-385.
    11. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Balduzzi, Francesco & Drofelnik, Jernej & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo & Campobasso, Michele Sergio, 2017. "Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment," Energy, Elsevier, vol. 128(C), pages 550-563.
    13. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    14. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.
    15. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    16. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    17. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    18. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    19. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    20. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.