IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp372-381.html
   My bibliography  Save this article

Cooling benefit of implementing radiative cooling on a city-scale

Author

Listed:
  • Li, Haoran
  • Zhang, Kai
  • Shi, Zijie
  • Jiang, Kaiyu
  • Wu, Bingyang
  • Ye, Peiliang

Abstract

The map of radiative cooling potential shows that the radiative cooling power can reach up to 100 W/m2 for its application in different climatic zones. However, the effect of building deployment on the city-scale application of radiative cooling is generally ignored in majority of existing studies, which overestimates the cooling benefit. This paper investigates the cooling benefit of implementing radiative cooling on a city-scale by considering building deployment. To determine the effect of building deployment on the radiative cooling potential, the city of Xi'an in China is modeled using COMSOL and verified with real weather data. Then, the thermal response of buildings with radiative cooling envelopes is discussed in detail. Finally, carbon emission reduction is derived at the city-scale by applying radiative cooling considering building deployment. The results show that the estimated radiative cooling power is approximately decreased by 14.7% for the ideal broadband surface and 47.1% for the ideal selective surface on the selected day by considering building deployment on a city-scale. Furthermore, carbon emission reductions of 0.52 gCO2/(m2⋅h) and 0.16 gCO2/(m2⋅h) can be achieved from the roof and walls on the selected day by applying radiative cooling material on both the roof and walls. This study can provide guiding significance for the large-scale application of radiative cooling in cities.

Suggested Citation

  • Li, Haoran & Zhang, Kai & Shi, Zijie & Jiang, Kaiyu & Wu, Bingyang & Ye, Peiliang, 2023. "Cooling benefit of implementing radiative cooling on a city-scale," Renewable Energy, Elsevier, vol. 212(C), pages 372-381.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:372-381
    DOI: 10.1016/j.renene.2023.05.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Alberghini & Seongdon Hong & L. Marcelo Lozano & Volodymyr Korolovych & Yi Huang & Francesco Signorato & S. Hadi Zandavi & Corey Fucetola & Ihsan Uluturk & Michael Y. Tolstorukov & Gang Chen & , 2021. "Sustainable polyethylene fabrics with engineered moisture transport for passive cooling," Nature Sustainability, Nature, vol. 4(8), pages 715-724, August.
    2. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    3. Yuan, Jinchao & Yin, Hongle & Yuan, Dan & Yang, Yongjian & Xu, Shaoyu, 2022. "On daytime radiative cooling using spectrally selective metamaterial based building envelopes," Energy, Elsevier, vol. 242(C).
    4. Liu, Junwei & Zhou, Zhihua & Zhang, Debao & Jiao, Shifei & Zhang, Ying & Luo, Longfei & Zhang, Zhuofen & Gao, Feng, 2020. "Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside," Renewable Energy, Elsevier, vol. 155(C), pages 90-99.
    5. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    6. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    7. Eli A. Goldstein & Aaswath P. Raman & Shanhui Fan, 2017. "Sub-ambient non-evaporative fluid cooling with the sky," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    8. Yu, Xinxian & Yao, Fengju & Huang, Wenjie & Xu, Dongyan & Chen, Chun, 2022. "Enhanced radiative cooling paint with broken glass bubbles," Renewable Energy, Elsevier, vol. 194(C), pages 129-136.
    9. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Yue & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2024. "The role of emissivity of the window surface inside and outside the atmospheric window in the radiative cooling effect," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    3. Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    5. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    7. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    9. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    10. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    11. Linlin Guo & Zhuqing Liang & Wenhao Li & Can Yang & Endong Wang, 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    12. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Alessandro Cannavale & Marco Pugliese & Roberto Stasi & Stefania Liuzzi & Francesco Martellotta & Vincenzo Maiorano & Ubaldo Ayr, 2024. "Effectiveness of Daytime Radiative Sky Cooling in Constructions," Energies, MDPI, vol. 17(13), pages 1-23, June.
    14. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    15. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    16. Han, Tian & Zhou, Zhihua & Du, Yahui & Wang, Wufan & Wang, Cheng & Yang, Xueqing & Liu, Junwei & Yang, Haibin & Cui, Hongzhi & Yan, Jinyue, 2024. "Advances in radiative sky cooling based on the promising electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    17. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    18. Pan, Aiqiang & Chen, Yi & Lin, Kaixin & Bai, Shengxi & Ho, Tsz Chung & Tso, Chi Yan, 2024. "Numerical investigations of novel hybrid solid desiccant cooling systems combined with passive radiative cooling panels," Renewable Energy, Elsevier, vol. 226(C).
    19. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    20. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:372-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.