IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001800.html
   My bibliography  Save this article

Data-driven modal parameterization for robust aerodynamic shape optimization of wind turbine blades

Author

Listed:
  • Li, Jichao
  • Dao, My Ha
  • Le, Quang Tuyen

Abstract

This paper proposes a data-driven modal parameterization to address the curse of dimensionality issue in robust aerodynamic shape design optimization of wind turbine blades. The proposed approach reduces the geometric dimensionality to tens by identifying and reformulating the feasible and meaningful geometric space for aerodynamic design optimization. This is achieved by four steps: building two-dimensional airfoil databases, training deep-learning-based airfoil generative models, developing a constrained generative sampling method of blades, and deriving blade modal parameterization from vast feasible blade samples. An effective surrogate-based optimization framework for wind turbine blade shape design is established by leveraging the benefits of this low-dimensional modal parameterization. The effectiveness and robustness of the proposed approach are demonstrated in aerodynamic shape optimization of the NREL 5 MW wind turbine blade under various sets of constraints and targets. Results show that wind turbine blade shape optimization using the proposed approach efficiently converges within hundreds of aerodynamic simulations. The optimized shapes and performances exactly meet the imposed requirements. This work lays the foundation for efficient robust shape design optimization of wind turbine blades using high-fidelity simulations.

Suggested Citation

  • Li, Jichao & Dao, My Ha & Le, Quang Tuyen, 2024. "Data-driven modal parameterization for robust aerodynamic shape optimization of wind turbine blades," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001800
    DOI: 10.1016/j.renene.2024.120115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    2. Zhao, Xiang & Dao, My Ha & Le, Quang Tuyen, 2023. "Digital twining of an offshore wind turbine on a monopile using reduced-order modelling approach," Renewable Energy, Elsevier, vol. 206(C), pages 531-551.
    3. Yin, Minghui & Yang, Zhiqiang & Xu, Yan & Liu, Jiankun & Zhou, Lianjun & Zou, Yun, 2018. "Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency," Applied Energy, Elsevier, vol. 221(C), pages 508-521.
    4. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    5. Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    2. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    3. Kisvari, Adam & Lin, Zi & Liu, Xiaolei, 2021. "Wind power forecasting – A data-driven method along with gated recurrent neural network," Renewable Energy, Elsevier, vol. 163(C), pages 1895-1909.
    4. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    5. Acarer, Sercan, 2020. "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines," Energy, Elsevier, vol. 201(C).
    6. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    7. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    8. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    9. Sang-Lae Lee & SangJoon Shin, 2020. "Wind Turbine Blade Optimal Design Considering Multi-Parameters and Response Surface Method," Energies, MDPI, vol. 13(7), pages 1-23, April.
    10. Zhaoyong Mao & Guangyong Yang & Tianqi Zhang & Wenlong Tian, 2020. "Aerodynamic Performance Analysis of a Building-Integrated Savonius Turbine," Energies, MDPI, vol. 13(10), pages 1-21, May.
    11. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    12. Jia, Liangyue & Hao, Jia & Hall, John & Nejadkhaki, Hamid Khakpour & Wang, Guoxin & Yan, Yan & Sun, Mengyuan, 2021. "A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power," Energy, Elsevier, vol. 215(PA).
    13. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    14. Firouzi, Afshin & Meshkani, Ali, 2021. "Risk-based optimization of the debt service schedule in renewable energy project finance," Utilities Policy, Elsevier, vol. 70(C).
    15. Piotr Doerffer & Krzysztof Doerffer & Tomasz Ochrymiuk & Janusz Telega, 2019. "Variable Size Twin-Rotor Wind Turbine," Energies, MDPI, vol. 12(13), pages 1-17, July.
    16. Abdelaziz, Khaled R. & Nawar, Mohamed A.A. & Ramadan, Ahmed & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance assessment of a modified of Savonius rotor: Impact of sine and conical blade profiles," Energy, Elsevier, vol. 272(C).
    17. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    18. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    19. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    20. Hércules Araújo Oliveira & José Gomes de Matos & Luiz Antonio de Souza Ribeiro & Osvaldo Ronald Saavedra & Jerson Rogério Pinheiro Vaz, 2023. "Assessment of Correction Methods Applied to BEMT for Predicting Performance of Horizontal-Axis Wind Turbines," Sustainability, MDPI, vol. 15(8), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.