IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018281.html
   My bibliography  Save this article

Thermal resistance capacity model for the cold release characteristics of cemented paste backfill with phase change materials

Author

Listed:
  • Wang, Mei
  • Shang, Shiyue
  • Liu, Lang
  • Wang, Yu
  • Huan, Chao

Abstract

A new method based on thermal resistance and capacity (RC) network model for fast predicting cold release characteristics of the cemented paste backfill with phase change materials is developed. The simplified heat transfer calculation model was established, and temperature variation was calculated by MATLAB. The RC model and program were validated by experimental results and numerical heat transfer simulations. Based on the verified RC model, the influence law of the initial ice-water ratio and slurry concentration were analyzed. With the increase of initial ice-water ratio and the decrease of slurry concentration, the cooling ability was enhanced and the cold release process was extended. Furthermore, the cemented paste backfill with ice and paraffin were compared. The cooling release effect of slurry containing ice grains was better than that of slurry containing paraffin throughout the melting process. Compared with the numerical heat transfer simulation method, RC model can effectively improve the calculation efficiency under the premise of satisfying the accuracy. This study is of great significance in providing a timely forecast of the cold release characteristics of the cemented paste backfill with phase change materials in engineering design and practice.

Suggested Citation

  • Wang, Mei & Shang, Shiyue & Liu, Lang & Wang, Yu & Huan, Chao, 2024. "Thermal resistance capacity model for the cold release characteristics of cemented paste backfill with phase change materials," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018281
    DOI: 10.1016/j.renene.2023.119913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minaei, Asgar & Talee, Zahra & Safikhani, Hamed & Ghaebi, Hadi, 2021. "Thermal resistance capacity model for transient simulation of Earth-Air Heat Exchangers," Renewable Energy, Elsevier, vol. 167(C), pages 558-567.
    2. du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "Case study: The effects of a variable flow energy saving strategy on a deep-mine cooling system," Applied Energy, Elsevier, vol. 102(C), pages 700-709.
    3. Wang, Mei & Liu, Peng & Liu, Lang & Geng, Mingli & Wang, Yu & Zhang, Zhefeng, 2022. "The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling," Renewable Energy, Elsevier, vol. 201(P1), pages 1026-1037.
    4. Mirzaei, Parham A. & Haghighat, Fariborz, 2012. "Modeling of phase change materials for applications in whole building simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5355-5362.
    5. Nandi, S. & Sanyasiraju, Y.V.S.S., 2022. "A second order accurate fixed-grid method for multi-dimensional Stefan problem with moving phase change materials," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Mei & Liu, Peng & Liu, Lang & Geng, Mingli & Wang, Yu & Zhang, Zhefeng, 2022. "The impact of the backfill direction on the backfill cooling performance using phase change materials in mine cooling," Renewable Energy, Elsevier, vol. 201(P1), pages 1026-1037.
    2. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    3. Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    4. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    5. Joybari, Mahmood Mastani & Seddegh, Saeid & Wang, Xiaolin & Haghighat, Fariborz, 2019. "Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 140(C), pages 234-244.
    6. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    7. Yin, Jianbao & Wang, Shisong & Hou, Xu & Wang, Zixian & Ye, Mengyan & Xing, Yuming, 2023. "Transient prediction model of finned tube energy storage system based on thermal network," Applied Energy, Elsevier, vol. 336(C).
    8. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    9. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    10. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    11. Valerio Lo Brano & Giuseppina Ciulla & Antonio Piacentino & Fabio Cardona, 2013. "On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation," Energies, MDPI, vol. 6(12), pages 1-23, November.
    12. Wang, Zhangyuan & Qiu, Feng & Yang, Wansheng & Zhao, Xudong, 2015. "Applications of solar water heating system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 645-652.
    13. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    14. Xian Li & Houli Fu, 2020. "Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines," Energies, MDPI, vol. 13(5), pages 1-11, March.
    15. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Punita Sangwan & Hooman Mehdizadeh-Rad & Anne Wai Man Ng & Muhammad Atiq Ur Rehman Tariq & Raphael Chukwuka Nnachi, 2022. "Performance Evaluation of Phase Change Materials to Reduce the Cooling Load of Buildings in a Tropical Climate," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    17. Nabavitabatabayi, Mohammadreza & Haghighat, Fariborz & Moreau, Alain & Sra, Paul, 2014. "Numerical analysis of a thermally enhanced domestic hot water tank," Applied Energy, Elsevier, vol. 129(C), pages 253-260.
    18. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    19. Bastani, Arash & Haghighat, Fariborz & Kozinski, Janusz, 2014. "Designing building envelope with PCM wallboards: Design tool development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 554-562.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.