IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017135.html
   My bibliography  Save this article

Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning

Author

Listed:
  • Shao, Yizhe
  • Liu, Jie

Abstract

Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method.

Suggested Citation

  • Shao, Yizhe & Liu, Jie, 2024. "Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017135
    DOI: 10.1016/j.renene.2023.119798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murcia, Juan Pablo & Réthoré, Pierre-Elouan & Dimitrov, Nikolay & Natarajan, Anand & Sørensen, John Dalsgaard & Graf, Peter & Kim, Taeseong, 2018. "Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates," Renewable Energy, Elsevier, vol. 119(C), pages 910-922.
    2. John D. Sørensen & Henrik S. Toft, 2010. "Probabilistic Design of Wind Turbines," Energies, MDPI, vol. 3(2), pages 1-17, February.
    3. Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
    4. Abdallah, I. & Natarajan, A. & Sørensen, J.D., 2015. "Impact of uncertainty in airfoil characteristics on wind turbine extreme loads," Renewable Energy, Elsevier, vol. 75(C), pages 283-300.
    5. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    6. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    7. Gentils, Theo & Wang, Lin & Kolios, Athanasios, 2017. "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm," Applied Energy, Elsevier, vol. 199(C), pages 187-204.
    8. Abdallah, I. & Natarajan, A. & Sørensen, J.D., 2016. "Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability," Renewable Energy, Elsevier, vol. 87(P1), pages 464-477.
    9. Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    2. Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
    3. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    4. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
    6. Qian, Guo-Wei & Ishihara, Takeshi, 2022. "A novel probabilistic power curve model to predict the power production and its uncertainty for a wind farm over complex terrain," Energy, Elsevier, vol. 261(PA).
    7. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.
    9. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    10. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    11. Michael Muskulus, 2015. "Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis," Energies, MDPI, vol. 8(12), pages 1-14, December.
    12. Leer, Donald & Chang, Byungik & Chen, Gerald & Carr, David & Starcher, Kenneth & Issa, Roy, 2013. "Windtane contour map of the state of Texas," Renewable Energy, Elsevier, vol. 58(C), pages 140-150.
    13. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    14. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    15. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2010. "Effects of meteorological variables on exergetic efficiency of wind turbine power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3237-3241, December.
    16. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    17. Lapa, Gabriel Vicentin Pereira & Gay Neto, Alfredo & Franzini, Guilherme Rosa, 2023. "Effects of blade torsion on IEA 15MW turbine rotor operation," Renewable Energy, Elsevier, vol. 219(P2).
    18. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    19. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    20. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.