Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2017.07.070
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abdallah, I. & Natarajan, A. & Sørensen, J.D., 2016. "Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability," Renewable Energy, Elsevier, vol. 87(P1), pages 464-477.
- Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jannie Sønderkær Nielsen & Lindsay Miller-Branovacki & Rupp Carriveau, 2021. "Probabilistic and Risk-Informed Life Extension Assessment of Wind Turbine Structural Components," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
- Hübler, Clemens, 2020. "Global sensitivity analysis for medium-dimensional structural engineering problems using stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Wilkie, David & Galasso, Carmine, 2020. "Impact of climate-change scenarios on offshore wind turbine structural performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Shao, Yizhe & Liu, Jie, 2024. "Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning," Renewable Energy, Elsevier, vol. 222(C).
- Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
- Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
- Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
- Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019.
"Uncertainty quantification and global sensitivity analysis for economic models,"
Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
- Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2017. "Uncertainty Quantification and Global Sensitivity Analysis for Economic Models," CER-ETH Economics working paper series 17/265, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- David Breitenmoser & Francesco Cerutti & Gernot Butterweck & Malgorzata Magdalena Kasprzak & Sabine Mayer, 2023. "Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
- Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
- W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
- Al Ali, Hannah & Daneshkhah, Alireza & Boutayeb, Abdesslam & Malunguza, Noble Jahalamajaha & Mukandavire, Zindoga, 2022. "Exploring dynamical properties of a Type 1 diabetes model using sensitivity approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 324-342.
- Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021.
"Versatile forward guidance: escaping or switching?,"
Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
- Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2018. "Versatile Forward Guidance: Escaping or Switching?," CEPR Discussion Papers 12559, C.E.P.R. Discussion Papers.
- Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
- Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
- Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
- Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
- Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
More about this item
Keywords
Wind energy; Uncertainty quantification; Aeroelastic wind turbine model; Annual energy production; Lifetime equivalent fatigue loads;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:910-922. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.