IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124007238.html
   My bibliography  Save this article

Solar tower power generation under future attenuation and climate scenarios

Author

Listed:
  • Polo, Jesús
  • Poddar, Shukla
  • Simal, Noelia
  • Ballestrín, Jesús
  • Marzo, Aitor
  • Kay, Merlinde
  • Carra, Elena

Abstract

This work presents a novel analysis of the potential impact of atmospheric attenuation in the performance of solar tower plants for future climate change scenarios (2030–2060). Atmospheric attenuation has been estimated from aerosol optical depth information in CMIP6 climatic models for several scenarios (optimistic and pessimistic in terms of mitigation actions taken). Atmospheric attenuation data derived from CMIP6 models was evaluated using the extensive and reliable experimental database at PSA (Plataforma Solar de Almería). Detailed modeling of a solar tower plant is also performed for the conditions at PSA showing a decrease in annual power production less than 2 % for 2030–2060 period. A global impact of atmospheric attenuation is analyzed in relative terms and global maps of future attenuation shows the specific regions more adversely affected in the optimistic and pessimistic future scenarios. According to impact of atmospheric attenuation in solar field efficiency, these results may help in the future planning of deployment for solar tower plants.

Suggested Citation

  • Polo, Jesús & Poddar, Shukla & Simal, Noelia & Ballestrín, Jesús & Marzo, Aitor & Kay, Merlinde & Carra, Elena, 2025. "Solar tower power generation under future attenuation and climate scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007238
    DOI: 10.1016/j.rser.2024.114997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    2. Simal, Noelia & Ballestrín, Jesús & Carra, Elena & Marzo, Aitor & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & López, Gabriel, 2024. "Typical solar extinction year at Plataforma Solar de Almería (Spain). Application to thermoelectric solar tower plants," Energy, Elsevier, vol. 296(C).
    3. Isaza, Alejandra & Kay, Merlinde & Evans, Jason P. & Prasad, Abhnil & Bremner, Stephen, 2023. "Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions," Renewable Energy, Elsevier, vol. 219(P2).
    4. Oka, Kazutaka & Mizutani, Wataru & Ashina, Shuichi, 2020. "Climate change impacts on potential solar energy production: A study case in Fukushima, Japan," Renewable Energy, Elsevier, vol. 153(C), pages 249-260.
    5. Polo, Jesús & Ballestrín, Jesús & Carra, Elena, 2020. "Assessment and improvement of modeling the atmospheric attenuation based on aerosol optical depth information with applicability to solar tower plants," Energy, Elsevier, vol. 208(C).
    6. Ballestrín, J. & Monterreal, R. & Carra, M.E. & Fernández-Reche, J. & Polo, J. & Enrique, R. & Rodríguez, J. & Casanova, M. & Barbero, F.J. & Alonso-Montesinos, J. & López, G. & Bosch, J.L. & Batlles,, 2018. "Solar extinction measurement system based on digital cameras. Application to solar tower plants," Renewable Energy, Elsevier, vol. 125(C), pages 648-654.
    7. Ballestrín, J. & Carra, E. & Monterreal, R. & Enrique, R. & Polo, J. & Fernández-Reche, J. & Barbero, J. & Marzo, A. & Alonso-Montesinos, J. & López, G. & Batlles, F.J., 2019. "One year of solar extinction measurements at Plataforma Solar de Almería. Application to solar tower plants," Renewable Energy, Elsevier, vol. 136(C), pages 1002-1011.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salmon, Aloïs & Marzo, Aitor & Polo, Jesús & Ballestrín, Jesús & Carra, Elena & Alonso-Montesinos, Joaquín, 2022. "World map of low-layer atmospheric extinction values for solar power tower plants projects," Renewable Energy, Elsevier, vol. 201(P1), pages 876-888.
    2. Simal, Noelia & Ballestrín, Jesús & Carra, Elena & Marzo, Aitor & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & López, Gabriel, 2024. "Typical solar extinction year at Plataforma Solar de Almería (Spain). Application to thermoelectric solar tower plants," Energy, Elsevier, vol. 296(C).
    3. Ballestrín, J. & Carra, E. & Alonso-Montesinos, J. & López, G. & Polo, J. & Marzo, A. & Fernández-Reche, J. & Barbero, J. & Batlles, F.J., 2020. "Modeling solar extinction using artificial neural networks. Application to solar tower plants," Energy, Elsevier, vol. 199(C).
    4. Carra, Elena & Marzo, Aitor & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & Monterreal, Rafael & Abreu, Edgar F.M. & Fernández-Reche, Jesús, 2020. "Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation methodology with measurement system," Renewable Energy, Elsevier, vol. 149(C), pages 1120-1132.
    5. Polo, Jesús & Ballestrín, Jesús & Carra, Elena, 2020. "Assessment and improvement of modeling the atmospheric attenuation based on aerosol optical depth information with applicability to solar tower plants," Energy, Elsevier, vol. 208(C).
    6. Ballestrín, J. & Carra, E. & Monterreal, R. & Enrique, R. & Polo, J. & Fernández-Reche, J. & Barbero, J. & Marzo, A. & Alonso-Montesinos, J. & López, G. & Batlles, F.J., 2019. "One year of solar extinction measurements at Plataforma Solar de Almería. Application to solar tower plants," Renewable Energy, Elsevier, vol. 136(C), pages 1002-1011.
    7. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    8. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    9. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    10. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Simone Lucatello & Roberto Sánchez, 2022. "Climate Change in North America: Risks, Impacts, and Adaptation. A Reflection Based on the IPCC Report AR6 - 2022," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(4), pages 1-18, Octubre -.
    12. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Luo, Xianfeng, 2024. "Climate warming, renewable energy consumption and rare earth market: Evidence from the United States," Energy, Elsevier, vol. 290(C).
    13. Silvia Soutullo & Emanuela Giancola & María Nuria Sánchez & José Antonio Ferrer & David García & María José Súarez & Jesús Ignacio Prieto & Elena Antuña-Yudego & Juan Luís Carús & Miguel Ángel Fernánd, 2020. "Methodology for Quantifying the Energy Saving Potentials Combining Building Retrofitting, Solar Thermal Energy and Geothermal Resources," Energies, MDPI, vol. 13(22), pages 1-25, November.
    14. Anton, Sorin Gabriel, 2021. "The impact of temperature increase on firm profitability. Empirical evidence from the European energy and gas sectors," Applied Energy, Elsevier, vol. 295(C).
    15. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    16. Isaza, Alejandra & Kay, Merlinde & Evans, Jason P. & Prasad, Abhnil & Bremner, Stephen, 2023. "Maximizing photovoltaic potential and minimizing costs in a future warmer climate: The role of atmospheric aerosols and greenhouse gas emissions," Renewable Energy, Elsevier, vol. 219(P2).
    17. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).
    18. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    19. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.