IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp401-413.html
   My bibliography  Save this article

Simulating blade-strike on fish passing through marine hydrokinetic turbines

Author

Listed:
  • Romero-Gomez, Pedro
  • Richmond, Marshall C.

Abstract

The occurrence, frequency, and intensity of blade-strike of fish on an axial-flow marine hydrokinetic turbine was simulated using two modeling approaches: a novel scheme combining computational fluid dynamics (CFD) with Lagrangian particle tracking, and a conventional kinematic model. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed CFD and Lagrangian particle tracking methods provided a more realistic representation of blade-strike mechanisms by integrating the following components: (i) advanced unsteady turbulence simulation using detached eddy simulation (DES), (ii) generation of inflow turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulence environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed Lagrangian method simulates potential fish trajectories and their interaction with the rotating turbine with the limitation that it does not include any volitional fish avoidance behavior. Depending upon the scenario, the percentage of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response for live fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The kinematic model predicted higher blade-strike probabilities and mortality rates than the Lagrangian particle-based method did. The Lagrangian method also offers the advantage of expanding the evaluation framework to include additional mechanisms of stress and injury on fish, or other aquatic biota, caused by hydrokinetic turbines and related devices.

Suggested Citation

  • Romero-Gomez, Pedro & Richmond, Marshall C., 2014. "Simulating blade-strike on fish passing through marine hydrokinetic turbines," Renewable Energy, Elsevier, vol. 71(C), pages 401-413.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:401-413
    DOI: 10.1016/j.renene.2014.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114003127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    2. Bahaj, A.S & Myers, L.E, 2003. "Fundamentals applicable to the utilisation of marine current turbines for energy production," Renewable Energy, Elsevier, vol. 28(14), pages 2205-2211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    2. Shen, Haixue & Zydlewski, Gayle Barbin & Viehman, Haley A. & Staines, Garrett, 2016. "Estimating the probability of fish encountering a marine hydrokinetic device," Renewable Energy, Elsevier, vol. 97(C), pages 746-756.
    3. Rossington, Kate & Benson, Thomas, 2020. "An agent-based model to predict fish collisions with tidal stream turbines," Renewable Energy, Elsevier, vol. 151(C), pages 1220-1229.
    4. Zangiabadi, E. & Masters, I. & Williams, Alison J. & Croft, T.N. & Malki, R. & Edmunds, M. & Mason-Jones, A. & Horsfall, I., 2017. "Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate," Renewable Energy, Elsevier, vol. 101(C), pages 1141-1156.
    5. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    6. Klopries, Elena-Maria & Schüttrumpf, Holger, 2020. "Mortality assessment for adult European eels (Anguilla Anguilla) during turbine passage using CFD modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 1481-1490.
    7. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    8. Yerzhan Asem Anuarkyzy & Marat B. Koshumbaev, 2016. "New Design of Low-Head Hydro Turbine for Small-Scale Hydropower Plant," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 2(3), pages 87-94.
    9. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    10. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    2. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    3. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    4. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    5. Mohammadi, S. & Hassanalian, M. & Arionfard, H. & Bakhtiyarov, S., 2020. "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renewable Energy, Elsevier, vol. 150(C), pages 147-155.
    6. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    7. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    8. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    9. Val, Dimitri V. & Chernin, Leon & Yurchenko, Daniil V., 2014. "Reliability analysis of rotor blades of tidal stream turbines," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 26-33.
    10. Fan, YaJun & Mu, AnLe & Ma, Tao, 2016. "Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator," Energy, Elsevier, vol. 112(C), pages 188-199.
    11. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    12. Goundar, Jai N. & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Numerical and experimental studies on hydrofoils for marine current turbines," Renewable Energy, Elsevier, vol. 42(C), pages 173-179.
    13. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    14. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    15. Artal, Osvaldo & Pizarro, Oscar & Sepúlveda, Héctor H., 2019. "The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea," Renewable Energy, Elsevier, vol. 139(C), pages 496-506.
    16. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    17. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    18. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    19. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    20. Schleicher, W.C. & Riglin, J.D. & Oztekin, A., 2015. "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design," Renewable Energy, Elsevier, vol. 76(C), pages 234-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:401-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.