IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1155-d216958.html
   My bibliography  Save this article

Comparison of Bioethanol Preparation from Triticale Straw Using the Ionic Liquid and Sulfate Methods

Author

Listed:
  • Małgorzata Smuga-Kogut

    (Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland)

  • Bartosz Walendzik

    (Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology Koszalin, Sniadeckich 2, 75-453 Koszalin, Poland)

  • Daria Szymanowska-Powalowska

    (Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland)

  • Joanna Kobus-Cisowska

    (Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, Wojska Polskiego, 60-637 Poznan, Poland)

  • Janusz Wojdalski

    (Department of Production Management and Engineering, Faculty of Production Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Mateusz Wieczorek

    (Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland)

  • Judyta Cielecka-Piontek

    (Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland)

Abstract

Triticale straw constitutes a potential raw material for biofuel production found in Poland in considerable quantities. Thus far, production of bioethanol has been based on food raw materials such as cereal seeds, sugar beets or potatoes, and the biofuel production methods developed for these lignocellulose raw materials can threaten the environment and are inefficient. Therefore, this study aimed to compare of methods for pretreatment of triticale straw using 1-ethyl-3-methylimidazolium acetate and the sulfate method in the aspect of ethanol production intended for fuel. Based on the conducted experiments it has been determined that the use of 1-ethyl-3-methylimidazolium acetate for the pretreatment of triticale straw resulted in an increase of reducing sugars after enzymatic hydrolysis and ethyl alcohol after alcoholic fermentation. Furthermore, the study compared the efficiency of enzymatic hydrolysis of triticale straw without pretreatment, after processing with ionic liquid, recycled ionic liquid and using sulfate method, allowing a comparison of these methods. The more favorable method of lignocellulose material purification was the use of ionic liquid, due to the lower amount of toxic byproducts formed during the process, and the efficiency test results of bioethanol production using pretreatment with ionic liquid and sulfate method were similar. Ionic liquid recycling after pretreatment of rye straw using lyophilization allowed us to reuse this solvent to purify rye straw, yet the efficiency of this method remained at a low level. As a result of the conducted study it was determined that the use of ionic liquid-1-ethyl-3-methylimidazolium acetate enhanced the yield of bioethanol from triticale straw from 1.60 g/dm 3 after processing without pre-treatment to 10.64 g/dm 3 after pre-treatment.

Suggested Citation

  • Małgorzata Smuga-Kogut & Bartosz Walendzik & Daria Szymanowska-Powalowska & Joanna Kobus-Cisowska & Janusz Wojdalski & Mateusz Wieczorek & Judyta Cielecka-Piontek, 2019. "Comparison of Bioethanol Preparation from Triticale Straw Using the Ionic Liquid and Sulfate Methods," Energies, MDPI, vol. 12(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1155-:d:216958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kłosowski, Grzegorz & Mikulski, Dawid, 2023. "Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 219(P1).
    2. Krzysztof Dutkowski & Marcin Kruzel & Bartosz Zajączkowski, 2020. "Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method," Energies, MDPI, vol. 14(1), pages 1-14, December.
    3. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    2. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    4. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    5. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    6. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    7. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    8. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    9. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    10. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    11. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    12. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    14. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    15. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Hívila M. P. Marreiro & Rogério S. Peruchi & Riuzuani M. B. P. Lopes & Silvia L. F. Andersen & Sayonara A. Eliziário & Paulo Rotella Junior, 2021. "Empirical Studies on Biomass Briquette Production: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-40, December.
    17. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    18. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    19. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    20. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1155-:d:216958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.