IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012521.html
   My bibliography  Save this article

Cistus shells used as a sustainable matrix for bioenergy production through slow pyrolysis process: Kinetic and thermodynamic study

Author

Listed:
  • El Farissi, Hammadi
  • Talhaoui, Abdelmonaem
  • EL Bachiri, Ali

Abstract

Cistus shells have attracted considerable attention as a potential feedstock for second-generation biofuels, specifically through fixed-bed pyrolysis. Analyzing the composition of cistus shells exhibits a high proportion of volatile products (74.82%), carbon (69.02%), oxygen (26.48%), and notably, a high calorific value (23290 kJ kg−1). Characterizing the bio-oil derived from cistus shells contains various compounds like fatty acids and alcohols that can be converted into fuels. The Eα values, determined using the FWO and KAS methods, were 179.773 kJ mol−1 and 177.92 kJ mol−1, respectively. The kinetics were described by the D3, D2, F3, and P2/3 models, with corresponding energies of 87 kJ mol−1, 78 kJ mol−1, 56 kJ mol−1, and 53 kJ mol−1, respectively. Increasing the conversion rate from 35% to 55% results in an increase in ΔH and ΔG values for the FWO method from 148.11 kJ mol−1 to 190.5 kJ mol−1 and from 168 kJ mol−1 to 202 kJ mol−1, respectively. For the KAS method, the values increase from 146 kJ mol−1 to 188 kJ mol−1 and from 44.44 kJ mol−1 to 85 kJ mol−1. Notably, the entropy variation decreased as the conversion rates increased, indicating a stronger tendency to approach thermodynamic equilibrium during the pyrolysis process.

Suggested Citation

  • El Farissi, Hammadi & Talhaoui, Abdelmonaem & EL Bachiri, Ali, 2023. "Cistus shells used as a sustainable matrix for bioenergy production through slow pyrolysis process: Kinetic and thermodynamic study," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012521
    DOI: 10.1016/j.renene.2023.119337
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
    2. Hou, Yanmei & Gao, Qi & He, Yuyu & Ni, Liangmeng & Ren, Hao & Su, Mengfu & Rong, Shaowen & Liu, Zhijia, 2023. "Pyrolysis characteristics and gaseous products of bamboo shoot shells under N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 215(C).
    3. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    4. Sun, Hao & Bi, Haobo & Jiang, Chunlong & Ni, Zhanshi & Tian, Junjian & Zhou, Wenliang & Qiu, Zhicong & Lin, Qizhao, 2022. "Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products," Renewable Energy, Elsevier, vol. 184(C), pages 1-14.
    5. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    6. Rego, Filipe & Soares Dias, Ana P. & Casquilho, Miguel & Rosa, Fátima C. & Rodrigues, Abel, 2020. "Pyrolysis kinetics of short rotation coppice poplar biomass," Energy, Elsevier, vol. 207(C).
    7. Varma, Anil Kumar & Lal, Navneeta & Rathore, Ashwani Kumar & Katiyar, Rajesh & Thakur, Lokendra Singh & Shankar, Ravi & Mondal, Prasenjit, 2021. "Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis," Energy, Elsevier, vol. 218(C).
    8. Ma, Mingyan & Xu, Donghai & Gong, Xuehan & Diao, Yunfei & Feng, Peng & Kapusta, Krzysztof, 2023. "Municipal sewage sludge product recirculation catalytic pyrolysis mechanism from a kinetic perspective," Renewable Energy, Elsevier, vol. 215(C).
    9. Wu, Zhiqiang & Zhang, Jie & Zhang, Bo & Guo, Wei & Yang, Guidong & Yang, Bolun, 2020. "Synergistic effects from co-pyrolysis of lignocellulosic biomass main component with low-rank coal: Online and offline analysis on products distribution and kinetic characteristics," Applied Energy, Elsevier, vol. 276(C).
    10. Zhang, Yu & Ahmad, Muhammad Sajjad & Shen, Boxiong & Yuan, Peng & Shah, Imran Ali & Zhu, Qi & Ibrahim, Muhammad & Bokhari, Awais & Klemeš, Jiří Jaromír & Elkamel, Ali, 2022. "Co-pyrolysis of lychee and plastic waste as a source of bioenergy through kinetic study and thermodynamic analysis," Energy, Elsevier, vol. 256(C).
    11. Stančin, H. & Mikulčić, H. & Manić, N. & Stojiljiković, D. & Vujanović, M. & Wang, X. & Duić, N., 2021. "Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
    2. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    3. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    4. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    5. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    6. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    7. Mo, Wenyu & Xiong, Zhe & Leong, Huiyi & Gong, Xi & Jiang, Long & Xu, Jun & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2022. "Processes simulation and environmental evaluation of biofuel production via Co-pyrolysis of tropical agricultural waste," Energy, Elsevier, vol. 242(C).
    8. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    10. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    11. Shahbeik, Hossein & Rafiee, Shahin & Shafizadeh, Alireza & Jeddi, Dorsa & Jafary, Tahereh & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Characterizing sludge pyrolysis by machine learning: Towards sustainable bioenergy production from wastes," Renewable Energy, Elsevier, vol. 199(C), pages 1078-1092.
    12. Magdalena Skrzyniarz & Marcin Sajdak & Anna Biniek-Poskart & Andrzej Skibiński & Marlena Krakowiak & Andrzej Piotrowski & Patrycja Krasoń & Monika Zajemska, 2024. "Methods and Validation Techniques of Chemical Kinetics Models in Waste Thermal Conversion Processes," Energies, MDPI, vol. 17(13), pages 1-27, June.
    13. Mohd Safaai, Nor Sharliza & Pang, Shusheng, 2021. "Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 175(C), pages 200-213.
    14. Ewa Syguła & Kacper Świechowski & Małgorzata Hejna & Ines Kunaszyk & Andrzej Białowiec, 2021. "Municipal Solid Waste Thermal Analysis—Pyrolysis Kinetics and Decomposition Reactions," Energies, MDPI, vol. 14(15), pages 1-27, July.
    15. Liu, Jie & Zhang, Zonghui & Zhang, Mingrui & Kaya, Madalina Georgiana Albu & Wang, Fang & Tang, Keyong, 2024. "Co-pyrolysis of chrome-tanned leather shavings with wheat straw: Thermal behavior, kinetics and pyrolysis products," Energy, Elsevier, vol. 301(C).
    16. Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Chen, Long & Wang, Hong & Tu, Zhi & Hu, Jian & Wu, Fangfang, 2024. "Renewable fuel and value-added chemicals potential of reed straw waste (RSW) by pyrolysis: Kinetics, thermodynamics, products characterization, and biochar application for malachite green removal," Renewable Energy, Elsevier, vol. 229(C).
    18. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    19. Biao Wang & Na Liu & Shanshan Wang & Xiaoxian Li & Rui Li & Yulong Wu, 2023. "Study on Co-Pyrolysis of Coal and Biomass and Process Simulation Optimization," Sustainability, MDPI, vol. 15(21), pages 1-16, October.
    20. Zhi Xu & Zhaohui Guo & Huimin Xie & Yulian Hu, 2022. "Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components," IJERPH, MDPI, vol. 19(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.