IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018401.html
   My bibliography  Save this article

Optimal energy management based on real-time performance analysis for the solid oxide fuel cell-combined heat and power system

Author

Listed:
  • Ni, Jing-Wei
  • Li, Ming-Jia
  • Zhang, Teng
  • Du, Shen
  • Hung, Tzu-Chen

Abstract

In order to realize the efficient and stable operation of the solid oxide fuel cell (SOFC)-combined heat and power (CHP) system in the typical applied scenario, three different energy management schemes are proposed in this study. First, a coupled calculation model of the solid oxide fuel cell-gas turbine-combined heat and power (SOFC-GT-CHP) system with a rated power of 30 kW for the SOFC stack is constructed. The inlet temperature and inlet pressure of the SOFC stack are optimized. The recommended design for the proposed system is thence obtained. Second, three operation schemes of SOFC-GT-CHP are proposed. They consist of the operation scheme of single-stack, multi-stack and optimal operation scheme coupled with vanadium redox flow battery (VRB). Finally, four types of typical applied scenarios in North China are selected. The real-time performance of the SOFC-GT-CHP system when applying three different operation schemes is obtained and comparatively analyzed. The results are presented as follows. First, the SOFC-GT-CHP system achieves a rated power of 44.50 kW and a rated system efficiency of 47.20 % when the inlet temperature and pressure of the stack are preferably 505 °C and 709.1 kPa. Second, the application of the multi-stack SOFC-GT-CHP system has the advantage of high efficiency in the low-load operation domain. With a net output power at 20 kW, the time average efficiency of SOFC-GT-CHP is increased from 38.37 % to 46.96 %. Finally, the SOFC-GT-CHP system achieves the highest time average generation efficiency of 46.13 % in the hotel applied scenario when applying the optimal operation scheme coupled with VRB. This meets the practical operation requirement of the SOFC stack. The reduction of the net output power range of SOFC-GT-CHP is 67.87 %. It shows that the optimal operation scheme is efficient and stable. The study can provide a reference for the energy management of the SOFC-GT-CHP system in typical applied scenarios.

Suggested Citation

  • Ni, Jing-Wei & Li, Ming-Jia & Zhang, Teng & Du, Shen & Hung, Tzu-Chen, 2024. "Optimal energy management based on real-time performance analysis for the solid oxide fuel cell-combined heat and power system," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018401
    DOI: 10.1016/j.energy.2024.132066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    2. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    3. Li, Bohan & Wang, Chaoyang & Liu, Ming & Fan, Jianlin & Yan, Junjie, 2023. "Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model," Renewable Energy, Elsevier, vol. 218(C).
    4. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    5. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    6. Ni, Jing-Wei & Li, Ming-Jia & Ma, Teng, 2023. "The study of energy filtering management process for microgrid based on the dynamic response model of vanadium redox flow battery," Applied Energy, Elsevier, vol. 336(C).
    7. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    8. Zhang, Teng & Li, Ming-Jia & Ni, Jing-Wei & Qian, Cun-Cun, 2024. "Study of dynamic performance of PEMFC-based CCHP system in a data center based on real-time load and a novel synergistic control method with variable working conditions," Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Linfei & Liu, Dongduan, 2023. "Adaptive multistep model predictive control for tubular grid-connected solid oxide fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    2. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    3. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    4. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    5. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    6. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    7. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    8. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    9. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    10. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    11. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    12. del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).
    13. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    14. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    15. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    16. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    17. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    18. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    19. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    20. Shi, Yao & Zhang, Zhiming & Xie, Lei & Wu, Xialai & Liu, Xueqin Amy & Lu, Shan & Su, Hongye, 2022. "Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.