Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pérez, Alejandro & Ruiz, Begoña & Fuente, Enrique & Calvo, Luis Fernando & Paniagua, Sergio, 2021. "Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector," Renewable Energy, Elsevier, vol. 169(C), pages 178-190.
- Garg, Rahul & Anand, Neeru & Kumar, Dinesh, 2016. "Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization," Renewable Energy, Elsevier, vol. 96(PA), pages 167-171.
- Ebtihal A. AlDayyat & Motasem N. Saidan & Zayed Al-Hamamre & Mohammad Al-Addous & Malek Alkasrawi, 2021. "Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study," Energies, MDPI, vol. 14(13), pages 1-11, June.
- Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
- Bai, Xiaopeng & Wang, Guanghui & Zhu, Zheng & Cai, Chen & Wang, Zhiqin & Wang, Decheng, 2020. "Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment," Renewable Energy, Elsevier, vol. 151(C), pages 446-453.
- Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
- Julia Karaeva & Svetlana Timofeeva & Svetlana Islamova & Kseny Bulygina & Firdavs Aliev & Vladimir Panchenko & Vadim Bolshev, 2023. "Pyrolysis of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vadim Bolshev & Vladimir Panchenko & Alexey Sibirev, 2023. "Engineering Innovations in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-4, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
- Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
- Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
- Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
- Marcin Landrat & Mamo Abawalo & Krzysztof Pikoń & Paulos Asefa Fufa & Semira Seyid, 2024. "Assessing the Potential of Teff Husk for Biochar Production through Slow Pyrolysis: Effect of Pyrolysis Temperature on Biochar Yield," Energies, MDPI, vol. 17(9), pages 1-17, April.
- Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
- Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
- Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
- Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
- Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
- Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
- Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
- Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
- Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
- Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
- Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
- Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Juan García-Quezada & Ricardo Musule-Lagunes & José Angel Prieto-Ruíz & Daniel José Vega-Nieva & Artemio Carrillo-Parra, 2022. "Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico," Energies, MDPI, vol. 16(1), pages 1-22, December.
More about this item
Keywords
biomass; Amaranthus retroflexus ; pyrolysis; thermogravimetric analysis; bio-oil; biochar;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:687-:d:1098434. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.