IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223015967.html
   My bibliography  Save this article

Pyrolysis behavior of automotive polypropylene plastics: ReaxFF molecular dynamics study on the co-pyrolysis of polypropylene and EPDM/POE

Author

Listed:
  • Guo, Guanlun
  • Fan, Kang
  • Guo, Ziqing
  • Guo, Wei

Abstract

The pyrolysis mechanism of automotive polypropylene (PP) plastics is essential for their recycling. Ethylene-propylene-diene monomer (EPDM) rubber and polyolefin elastomers (POE) are two common additives used in automotive polypropylene plastics, but little is known about the influence of the above two on PP pyrolysis. In this work, the molecular models of EPDM and POE were constructed. Then the pyrolysis behaviors of PP, EPDM, and POE were investigated by reactive force field molecular dynamics (ReaxFF MD), and also the co-pyrolysis of PP and EPDM/POE. The results showed that the content of C40+ products decreased rapidly and the other components were formed in 300–400 ps (2000–2500 K) in all the systems. The co-pyrolysis of PP and EPDM promoted the formation of the tar and delayed the formation of C40+ products. While the co-pyrolysis of PP and POE increased the gas formation, especially C2H2 and C3H4, but inhibited the formation of heavier components. It was also found that C2H2 was mainly from C2H3, C3H5, and C5H6, and C3H4 was mainly from C3H3, C3H5, C4H7, C6H8, and C6H9. The contents of C2H3, C3H3 and C3H5 were significantly high in the PP-POE system. Finally, the associated radical reactions were observed in the overall reaction pathways.

Suggested Citation

  • Guo, Guanlun & Fan, Kang & Guo, Ziqing & Guo, Wei, 2023. "Pyrolysis behavior of automotive polypropylene plastics: ReaxFF molecular dynamics study on the co-pyrolysis of polypropylene and EPDM/POE," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015967
    DOI: 10.1016/j.energy.2023.128202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Dikun & Li, Ping & Si, Ting & Guo, Xin, 2021. "ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene," Energy, Elsevier, vol. 218(C).
    2. Hong, Dikun & Gao, Peng & Wang, Chunbo, 2022. "A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yubo & Yang, Zhao & Lv, Zijian & Zhang, Yong & Li, Jie & Fei, Teng, 2023. "Combustion mechanism and product characteristics of 2,3,3,3-tetrafluoropropene as an environmentally friendly working fluid for organic Rankine cycle," Energy, Elsevier, vol. 268(C).
    2. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Zhenbo, 2024. "Microscopic mechanism for CO2-assisted co-gasification of polyethylene and softwood lignin: A reactive force field molecular dynamics study," Energy, Elsevier, vol. 289(C).
    3. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Zhenbo, 2023. "Investigation on reaction mechanism for CO2 gasification of softwood lignin by ReaxFF MD method," Energy, Elsevier, vol. 267(C).
    4. Yu, Xiaozhen & Chen, Jihe & Meng, Xiangbao & Zhu, Yujian & Li, Yadi & Qin, Zhao & Wu, Yang & Yan, Ke & Song, Shizemin, 2024. "Polyethylene deflagration characterization and kinetic mechanism analysis," Energy, Elsevier, vol. 303(C).
    5. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Xie, Teng & Yao, Zonglu & Huo, Lili & Jia, Jixiu & Zhang, Peizhen & Tian, Liwei & Zhao, Lixin, 2023. "Characteristics of biochar derived from the co-pyrolysis of corn stalk and mulch film waste," Energy, Elsevier, vol. 262(PB).
    7. Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
    8. Bai, Zhongze & Jiang, Xi Zhuo & Luo, Kai H., 2022. "Effects of water on pyridine pyrolysis: A reactive force field molecular dynamics study," Energy, Elsevier, vol. 238(PB).
    9. Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
    10. Ruan, Renhui & Wang, Guan & Li, Shuaishuai & Wang, Min & Lin, Hui & Tan, Houzhang & Wang, Xuebin & Liu, Feng, 2024. "The effect of alkali and alkaline earth metals (AAEMs) on combustion and PM formation during oxy-fuel combustion of coal rich in AAEMs," Energy, Elsevier, vol. 293(C).
    11. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    12. Chen, Yubo & Yang, Zhao & Zhang, Yong & He, Hongxia & Li, Jie, 2023. "Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid," Energy, Elsevier, vol. 284(C).
    13. Li, Moshan & Lu, Yiyu & Hu, Erfeng & Yang, Yang & Tian, Yishui & Dai, Chongyang & Li, Chenhao, 2023. "Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating," Energy, Elsevier, vol. 266(C).
    14. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    15. Xu, Tong & Wang, Chunbo & Hong, Dikun & Li, Song & Yue, Shuang, 2023. "The synergistic effect during co-combustion of municipal sludge and coal: Experimental and ReaxFF molecular dynamic study," Energy, Elsevier, vol. 262(PB).
    16. Hong, Dikun & Gao, Peng & Wang, Chunbo, 2022. "A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal," Energy, Elsevier, vol. 239(PC).
    17. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    18. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments," Energy, Elsevier, vol. 283(C).
    19. Zhang, Zhihao & He, Guogeng & Hua, Jialiang & Hao, Zian & Ning, Qian & Zhou, Sai, 2024. "Comparison of combustion and interaction mechanisms of mixed working fluids R152a and R1270: A theoretical and experimental study," Energy, Elsevier, vol. 304(C).
    20. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.