IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003252.html
   My bibliography  Save this article

Rapid preparation strategy of highly microporous activated carbons for gas adsorption, via tunable-energy-density microwave heating

Author

Listed:
  • Li, Junfeng
  • Zhou, Wei
  • Huang, Yuming
  • Zhao, Yang
  • Li, Xuhan
  • Xue, Naiyuan
  • Qu, Zhibin
  • Tang, Zhipei
  • Xie, Liang
  • Li, Jingyu
  • Liu, Zheyu
  • Fang, Yitian
  • Pi, Xinxin
  • Meng, Xiaoxiao
  • Zhao, Haiqian
  • Gao, Jihui
  • Sun, Fei
  • Zhao, Guangbo
  • Qin, Yukun

Abstract

Microwave heating for the production of activated carbons has garnered significant research interest in the realms of gas adsorption. Nonetheless, the effect of tunable-energy-density microwave irradiation on the production of activated carbons is unclear. Herein, we report a tunable-energy-density microwave heating strategy to rapidly prepare highly microporous activated carbons. With the raising microwave energy density, the pore volume increases from 0.68 cm3 g−1 to 0.89 cm3 g−1, with a 70% decrease in the preparation time. Moreover, due to the high ratio of micropore (84.4%–86.6%) and great hydrophobicity, the optimal toluene adsorption capacity reaches 0.56 g g−1 and 0.47 g g−1 in the dry and wet (97% RH) environment, respectively. Due to the high ratio of ultramicropore (62.6%–69.0%), at 1 bar, the optimal CO2 uptake for 25 °C and 0 °C reaches 4.27 mmol g−1 and 6.41 mmol g−1, respectively. This study introduces a straightforward and effective method for the swift production of activated carbons, applicable across a spectrum of uses.

Suggested Citation

  • Li, Junfeng & Zhou, Wei & Huang, Yuming & Zhao, Yang & Li, Xuhan & Xue, Naiyuan & Qu, Zhibin & Tang, Zhipei & Xie, Liang & Li, Jingyu & Liu, Zheyu & Fang, Yitian & Pi, Xinxin & Meng, Xiaoxiao & Zhao, , 2024. "Rapid preparation strategy of highly microporous activated carbons for gas adsorption, via tunable-energy-density microwave heating," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003252
    DOI: 10.1016/j.renene.2024.120260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
    2. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    3. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    3. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    4. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    5. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    6. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    7. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    8. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    9. Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Yi Zhang & Jun Xu & Deming Wang, 2020. "Experimental Study on the Inhibition Effects of Nitrogen and Carbon Dioxide on Coal Spontaneous Combustion," Energies, MDPI, vol. 13(20), pages 1-14, October.
    11. Li, Min & Yang, Xueqin & Lu, Yi & Wang, Deming & Shi, Shiliang & Ye, Qing & Li, He & Wang, Zheng, 2023. "Thermodynamic variation law and influence mechanism of low-temperature oxidation of lignite samples with different moisture contents," Energy, Elsevier, vol. 262(PB).
    12. Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
    13. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    14. He, Jiawei & Li, He & Yang, Wei & Lu, Jiexin & Lu, Yi & Liu, Ting & Shi, Shiliang, 2023. "Experimental study on erosion mechanism and pore structure evolution of bituminous and anthracite coal under matrix acidification and its significance to coalbed methane recovery," Energy, Elsevier, vol. 283(C).
    15. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    16. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Sun, Yong & Yu, Xu, 2022. "Feasibility investigation of enhanced coalbed methane recovery by steam injection," Energy, Elsevier, vol. 255(C).
    17. Zhou, Yinbo & Zhang, Ruilin & Huang, Jilei & Li, Zenghua & Chen, Zhao & Zhao, Zhou & Hong, Yidu, 2020. "Influence of alkaline solution injection for wettability and permeability of coal with CO2 injection," Energy, Elsevier, vol. 202(C).
    18. Zhao, Can & Ge, Lichao & Mai, Longhui & Chen, Simo & Li, Qian & Yao, Lei & Li, Dongyang & Wang, Yang & Xu, Chang, 2023. "Preparation and performance of coal-based activated carbon based on an orthogonal experimental study," Energy, Elsevier, vol. 274(C).
    19. Lan, Wenjian & Wang, Hanxiang & Liu, Qihu & Zhang, Xin & Chen, Jingkai & Li, Ziling & Feng, Kun & Chen, Shengshan, 2021. "Investigation on the microwave heating technology for coalbed methane recovery," Energy, Elsevier, vol. 237(C).
    20. Wang, Yurou & Guo, Wenjuan & Chen, Wei & Xu, Gongxun & Zhu, Guoqiang & Xie, Geliang & Xu, Lujiang & Dong, Chengyu & Gao, Shuai & Chen, Yingquan & Yang, Haiping & Chen, Hanping & Fang, Zhen, 2024. "Co-production of porous N-doped biochar and hydrogen-rich gas production from simultaneous pyrolysis-activation-nitrogen doping of biomass: Synergistic mechanism of KOH and NH3," Renewable Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.