IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003252.html
   My bibliography  Save this article

Rapid preparation strategy of highly microporous activated carbons for gas adsorption, via tunable-energy-density microwave heating

Author

Listed:
  • Li, Junfeng
  • Zhou, Wei
  • Huang, Yuming
  • Zhao, Yang
  • Li, Xuhan
  • Xue, Naiyuan
  • Qu, Zhibin
  • Tang, Zhipei
  • Xie, Liang
  • Li, Jingyu
  • Liu, Zheyu
  • Fang, Yitian
  • Pi, Xinxin
  • Meng, Xiaoxiao
  • Zhao, Haiqian
  • Gao, Jihui
  • Sun, Fei
  • Zhao, Guangbo
  • Qin, Yukun

Abstract

Microwave heating for the production of activated carbons has garnered significant research interest in the realms of gas adsorption. Nonetheless, the effect of tunable-energy-density microwave irradiation on the production of activated carbons is unclear. Herein, we report a tunable-energy-density microwave heating strategy to rapidly prepare highly microporous activated carbons. With the raising microwave energy density, the pore volume increases from 0.68 cm3 g−1 to 0.89 cm3 g−1, with a 70% decrease in the preparation time. Moreover, due to the high ratio of micropore (84.4%–86.6%) and great hydrophobicity, the optimal toluene adsorption capacity reaches 0.56 g g−1 and 0.47 g g−1 in the dry and wet (97% RH) environment, respectively. Due to the high ratio of ultramicropore (62.6%–69.0%), at 1 bar, the optimal CO2 uptake for 25 °C and 0 °C reaches 4.27 mmol g−1 and 6.41 mmol g−1, respectively. This study introduces a straightforward and effective method for the swift production of activated carbons, applicable across a spectrum of uses.

Suggested Citation

  • Li, Junfeng & Zhou, Wei & Huang, Yuming & Zhao, Yang & Li, Xuhan & Xue, Naiyuan & Qu, Zhibin & Tang, Zhipei & Xie, Liang & Li, Jingyu & Liu, Zheyu & Fang, Yitian & Pi, Xinxin & Meng, Xiaoxiao & Zhao, , 2024. "Rapid preparation strategy of highly microporous activated carbons for gas adsorption, via tunable-energy-density microwave heating," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003252
    DOI: 10.1016/j.renene.2024.120260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    2. Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
    3. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    2. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    3. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    4. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    5. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    6. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Wang, Lei & Meng, Qiaorong & Lu, Yang & Gao, Qiang, 2023. "Comparative study on the chemical structure characteristics of lump coal during superheated water vapor pyrolysis and conventional pyrolysis," Energy, Elsevier, vol. 276(C).
    7. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    8. Yang, Zairong & Wang, Chaolin & Zhao, Yu & Bi, Jing, 2024. "Microwave fracturing of frozen coal with different water content: Pore-structure evolution and temperature characteristics," Energy, Elsevier, vol. 294(C).
    9. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    10. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    11. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    12. Xiangyu Wang & Hongwei Zhou & Lei Zhang & Wei Hou & Jianchao Cheng, 2022. "Dual-Zone Gas Flow Characteristics for Gas Drainage Considering Anomalous Diffusion," Energies, MDPI, vol. 15(18), pages 1-16, September.
    13. Xia, Mingwei & Chen, Zhiqiang & Chen, Yingquan & Yang, Haiping & Chen, Wei & Chen, Hanping, 2024. "Effect of various potassium agents on product distributions and biochar carbon sequestration of biomass pyrolysis," Energy, Elsevier, vol. 289(C).
    14. Yuannan Zheng & Qingzhao Li & Guiyun Zhang & Yang Zhao & Xinxin Liu, 2021. "Evaluation of separation effect for CH4 enrichment from coalbed methane (CBM) under the synergistic action of temperature and pressure based on IAST theory," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 590-605, June.
    15. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    16. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    17. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    18. Ren, Yangguang & Xu, Zhiqiang & Gu, Suqian, 2022. "Physicochemical properties and slurry ability changes of lignite after microwave upgrade with the assist of lignite semi-coke," Energy, Elsevier, vol. 252(C).
    19. Qi, Penggang & Su, Yinhai & Yang, Liren & Wang, Jiaxing & Jiang, Mei & Xiong, Yuanquan, 2024. "Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon," Energy, Elsevier, vol. 298(C).
    20. Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.