IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp793-798.html
   My bibliography  Save this article

Valorization of apple pomace using a two-step slightly acidic processing strategy

Author

Listed:
  • Luo, Jing
  • Ma, Yicong
  • Xu, Yong

Abstract

For valorization of apple pomace (AP), a two-step slightly acidic process was designed and experimentally tested using low amounts of sulfuric acid (H2SO4). First, pectin was prepared using H2SO4-assisted extraction of AP at 100 °C, while the remaining depectinized apple mud (DAM) was dehydrated and dried, which rendered it amenable for storage, transportation, and further processing. Second, hemicelluloses were effectively hydrolyzed and filtered out by increasing the acidic processing temperature to 120 °C. Therefore, the dehydration and drying problem of DAM was successfully resolved. For understanding the mechanisms underlying H2SO4 processing, the acidic reaction kinetics of DAM was investigated. We observed a significant change in the chemical compositions and structural properties of DAM. Other than the homo-polysaccharide of cellulose, the hetero-polysaccharide of hemicelluloses was selectively digested and solubilized from the intercellular spaces of DAM tissues, which facilitated moisture transfer and improved dehydration efficiency of the hot-air drying process. In total, we produced 163.2 g pectin, 334.5 g cellulose-rich substances, and 49.7 g monosaccharides from 1,000 g apple pomace. This strategy may considerably improve the economic and environmental benefits of AP utilization, and assist in developing methods for dehydration and drying of agricultural residue-liked wastes.

Suggested Citation

  • Luo, Jing & Ma, Yicong & Xu, Yong, 2020. "Valorization of apple pomace using a two-step slightly acidic processing strategy," Renewable Energy, Elsevier, vol. 152(C), pages 793-798.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:793-798
    DOI: 10.1016/j.renene.2020.01.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manzanares, P. & Ballesteros, I. & Negro, M.J. & González, A. & Oliva, J.M. & Ballesteros, M., 2020. "Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context," Renewable Energy, Elsevier, vol. 145(C), pages 1235-1245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Borujeni, Nasim Espah & Alavijeh, Masih Karimi & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits," Renewable Energy, Elsevier, vol. 208(C), pages 275-286.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    2. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    3. Xu, Ling-Hua & Ma, Cheng-Ye & Zhang, Chen & Xu, Ying & Wen, Jia-Long & Yuan, Tong-Qi, 2022. "An integrated acetic acid-catalyzed hydrothermal-pretreatment (AAP) and rapid ball-milling for producing high-yield of xylo-oligosaccharides, fermentable glucose and lignin from poplar wood," Renewable Energy, Elsevier, vol. 201(P1), pages 691-699.
    4. Ortega, Julieth Orduña & Mora Vargas, Jorge Andrés & Metzker, Gustavo & Gomes, Eleni & da Silva, Roberto & Boscolo, Mauricio, 2021. "Enhancing the production of the fermentable sugars from sugarcane straw: A new approach to applying alkaline and ozonolysis pretreatments," Renewable Energy, Elsevier, vol. 164(C), pages 502-508.
    5. Barbara Mendecka & Giovanni Di Ilio & Lidia Lombardi, 2020. "Thermo-Fluid Dynamic and Kinetic Modeling of Hydrothermal Carbonization of Olive Pomace in a Batch Reactor," Energies, MDPI, vol. 13(16), pages 1-16, August.
    6. Romero-García, J.M. & Susmozas, A. & Padilla-Rascón, C. & Manzanares, P. & Castro, E. & Oliva, J.M. & Romero, I., 2022. "Ethanol production from olive stones using different process strategies," Renewable Energy, Elsevier, vol. 194(C), pages 1174-1183.
    7. Diego Cardoza & Inmaculada Romero & Teresa Martínez & Encarnación Ruiz & Francisco J. Gallego & Juan Carlos López-Linares & Paloma Manzanares & Eulogio Castro, 2021. "Location of Biorefineries Based on Olive-Derived Biomass in Andalusia, Spain," Energies, MDPI, vol. 14(11), pages 1-16, May.
    8. Jennifer Attard & Helena McMahon & Pat Doody & Johan Belfrage & Catriona Clark & Judit Anda Ugarte & Maria Natividad Pérez-Camacho & María del Sol Cuenca Martín & Antonio José Giráldez Morales & James, 2020. "Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    9. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.
    10. Pablo Doménech & Aleta Duque & Isabel Higueras & Raquel Iglesias & Paloma Manzanares, 2020. "Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion," Energies, MDPI, vol. 13(17), pages 1-13, September.
    11. Zhang, Qilin & Guo, Zongwei & Zeng, Xianhai & Ramarao, Bandaru & Xu, Feng, 2021. "A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations," Renewable Energy, Elsevier, vol. 179(C), pages 351-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:793-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.