Valorization of apple pomace using a two-step slightly acidic processing strategy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.01.120
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Manzanares, P. & Ballesteros, I. & Negro, M.J. & González, A. & Oliva, J.M. & Ballesteros, M., 2020. "Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context," Renewable Energy, Elsevier, vol. 145(C), pages 1235-1245.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Borujeni, Nasim Espah & Alavijeh, Masih Karimi & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits," Renewable Energy, Elsevier, vol. 208(C), pages 275-286.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
- Romero-García, J.M. & Susmozas, A. & Padilla-Rascón, C. & Manzanares, P. & Castro, E. & Oliva, J.M. & Romero, I., 2022. "Ethanol production from olive stones using different process strategies," Renewable Energy, Elsevier, vol. 194(C), pages 1174-1183.
- Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
- Diego Cardoza & Inmaculada Romero & Teresa Martínez & Encarnación Ruiz & Francisco J. Gallego & Juan Carlos López-Linares & Paloma Manzanares & Eulogio Castro, 2021. "Location of Biorefineries Based on Olive-Derived Biomass in Andalusia, Spain," Energies, MDPI, vol. 14(11), pages 1-16, May.
- Xu, Ling-Hua & Ma, Cheng-Ye & Zhang, Chen & Xu, Ying & Wen, Jia-Long & Yuan, Tong-Qi, 2022. "An integrated acetic acid-catalyzed hydrothermal-pretreatment (AAP) and rapid ball-milling for producing high-yield of xylo-oligosaccharides, fermentable glucose and lignin from poplar wood," Renewable Energy, Elsevier, vol. 201(P1), pages 691-699.
- Jennifer Attard & Helena McMahon & Pat Doody & Johan Belfrage & Catriona Clark & Judit Anda Ugarte & Maria Natividad Pérez-Camacho & María del Sol Cuenca Martín & Antonio José Giráldez Morales & James, 2020. "Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
- Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.
- Ortega, Julieth Orduña & Mora Vargas, Jorge Andrés & Metzker, Gustavo & Gomes, Eleni & da Silva, Roberto & Boscolo, Mauricio, 2021. "Enhancing the production of the fermentable sugars from sugarcane straw: A new approach to applying alkaline and ozonolysis pretreatments," Renewable Energy, Elsevier, vol. 164(C), pages 502-508.
- Pablo Doménech & Aleta Duque & Isabel Higueras & Raquel Iglesias & Paloma Manzanares, 2020. "Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion," Energies, MDPI, vol. 13(17), pages 1-13, September.
- Barbara Mendecka & Giovanni Di Ilio & Lidia Lombardi, 2020. "Thermo-Fluid Dynamic and Kinetic Modeling of Hydrothermal Carbonization of Olive Pomace in a Batch Reactor," Energies, MDPI, vol. 13(16), pages 1-16, August.
- Zhang, Qilin & Guo, Zongwei & Zeng, Xianhai & Ramarao, Bandaru & Xu, Feng, 2021. "A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations," Renewable Energy, Elsevier, vol. 179(C), pages 351-358.
More about this item
Keywords
Apple pomace and mud; Slightly acidic pretreatments; Selective hydrolysis; Dehydration and drying; Homo- and hetero-polysaccharides;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:793-798. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.