IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp157-167.html
   My bibliography  Save this article

Biopolymeric transitions under pyrolytic thermal degradation of Pigeon pea stalk

Author

Listed:
  • Sahu, Parmanand
  • Gangil, Sandip
  • Bhargav, Vinod Kumar

Abstract

In this article, thermogravimetric analysis (TGA) is used to explore biopolymeric transitions in Pigeon pea stalks (PPS) at various heating rates (10, 20, 30 and 40 °C/min). The appeared transitions of TG-signals were analyzed in depth and discussed critically in terms of biopolymeric changes occurring within the major bioconstituents of PPS due to the influence of different heating rates. The intersection points of the deconvoluted conversion rate spectrum were taken as the stage transition points from one biopolymeric region to another. The stage transition points for hemicellulose to cellulose were at 328 °C and from cellulose to lignin at 356 °C, respectively, at a heating rate of 10 °C/min. This article is presenting the stage transition points first time and highlights the procedure of obtaining them using the conversion rate spectrum. The kinetics of individual bioconstituents of the PPS was also thoroughly investigated. The average activation energy was highest for hemicellulose 283–287 kJ/mol, followed by cellulose (134–137 kJ/mol) and lignin (30–41 kJ/mol). The pyrolysis of PPS followed the multistage reaction mechanism (F1 and A4) based on the Z-master plot technique.

Suggested Citation

  • Sahu, Parmanand & Gangil, Sandip & Bhargav, Vinod Kumar, 2023. "Biopolymeric transitions under pyrolytic thermal degradation of Pigeon pea stalk," Renewable Energy, Elsevier, vol. 206(C), pages 157-167.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:157-167
    DOI: 10.1016/j.renene.2023.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    2. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    3. Sharma, Abhishek & Pareek, Vishnu & Zhang, Dongke, 2015. "Biomass pyrolysis—A review of modelling, process parameters and catalytic studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1081-1096.
    4. Cardoen, Dennis & Joshi, Piyush & Diels, Ludo & Sarma, Priyangshu M. & Pant, Deepak, 2015. "Agriculture biomass in India: Part 1. Estimation and characterization," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 39-48.
    5. Gangil, Sandip, 2015. "Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: A TG-diagnosis," Renewable Energy, Elsevier, vol. 76(C), pages 478-483.
    6. Singh, Rishikesh kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2019. "Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters," Renewable Energy, Elsevier, vol. 138(C), pages 805-819.
    7. Durga, Mattaparthi Lakshmi & Gangil, Sandip & Bhargav, Vinod Kumar, 2022. "Thermal influx induced biopolymeric transitions in paddy straw," Renewable Energy, Elsevier, vol. 199(C), pages 1024-1032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahu, Parmanand & Gangil, Sandip, 2023. "Stepped pyrolysis: A novel approach for enhanced adsorbency and carbon in Pigeon pea stalk char," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahu, Parmanand & Gangil, Sandip, 2023. "Stepped pyrolysis: A novel approach for enhanced adsorbency and carbon in Pigeon pea stalk char," Renewable Energy, Elsevier, vol. 219(P2).
    2. Durga, Mattaparthi Lakshmi & Gangil, Sandip & Bhargav, Vinod Kumar, 2022. "Thermal influx induced biopolymeric transitions in paddy straw," Renewable Energy, Elsevier, vol. 199(C), pages 1024-1032.
    3. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    4. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    5. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
    7. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    8. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Amalia Suryani & Alberto Bezama & Claudia Mair-Bauernfeind & Macben Makenzi & Daniela Thrän, 2022. "Drivers and Barriers to Substituting Firewood with Biomass Briquettes in the Kenyan Tea Industry," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    10. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    11. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    13. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    14. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    16. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    17. Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
    18. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    19. Mohammad I. Jahirul & Farhad M. Hossain & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury, 2021. "A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application," Energies, MDPI, vol. 14(13), pages 1-18, June.
    20. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:157-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.