IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1553-d1362906.html
   My bibliography  Save this article

Analysis of Thermal Management Strategies for 21700 Lithium-Ion Batteries Incorporating Phase Change Materials and Porous Copper Foam with Different Battery Orientations

Author

Listed:
  • Chen-Lung Wang

    (Department of Vehicle Engineering, National Pingtung University of Science and Technology, Neipu Township, Pingtung 91201, Taiwan)

  • Jik Chang Leong

    (Department of Vehicle Engineering, National Pingtung University of Science and Technology, Neipu Township, Pingtung 91201, Taiwan)

Abstract

The significant amount of heat generated during the discharge process of a lithium-ion battery can lead to battery overheat, potential damage, and even fire hazards. The optimal operating temperature of a battery ranges from 25 °C to 45 °C. Hence, battery thermal management cooling techniques are crucial for controlling battery temperature. In this work, the cooling of 21700 lithium-ion batteries during their discharging processes using phase-change materials (PCMs) and porous pure copper foams were simulated. The effects of discharge intensities, battery orientations, and battery arrangements were investigated by observing the changes in temperature distributions. Based on current simulations for a 2C discharge, air-cooled vertical batteries arranged in unidirectional configuration exhibit an increase in heat dissipation by 44% in comparison to the horizontal batteries. This leads to a decrease in the maximum battery temperature by about 10 °C. The use of either PCMs or copper foams can effectively cool the batteries. Regardless of the battery orientation, the maximum battery temperature during a 2C discharge drops dramatically from approximately 90 °C when air-cooled to roughly 40 °C when the air is replaced by PCM cooling or when inserted with a copper foam of 0.9 porosity. If the PCM/copper foam approach is implemented, this maximum temperature further decreases to slightly above 30 °C. Although not very significant, it has been discovered that crossover arrangement slightly reduces the maximum temperature by no more than 1 °C. When a pure copper foam with a porosity ranging from 0.90 to 0.97 is saturated with a PCM, the excellent thermal conductivity of pure copper, combined with the PCM latent heat absorption, can best help maintain the battery pack within its range of optimal operating temperatures. If the porosity of the copper foam decreases from 0.95 to 0.5, the volumetric average temperature of the batteries may increase from 30 °C to 31 °C.

Suggested Citation

  • Chen-Lung Wang & Jik Chang Leong, 2024. "Analysis of Thermal Management Strategies for 21700 Lithium-Ion Batteries Incorporating Phase Change Materials and Porous Copper Foam with Different Battery Orientations," Energies, MDPI, vol. 17(7), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1553-:d:1362906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling, Ziye & Chen, Jiajie & Fang, Xiaoming & Zhang, Zhengguo & Xu, Tao & Gao, Xuenong & Wang, Shuangfeng, 2014. "Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system," Applied Energy, Elsevier, vol. 121(C), pages 104-113.
    2. Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
    3. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Ding & Wu, Zihao & Jiang, Li & Yan, Yuying & Chen, Wei-Hsin & Cao, Jin & Cao, Bingyang, 2024. "Realizing rapid cooling and latent heat recovery in the thermoelectric-based battery thermal management system at high temperatures," Applied Energy, Elsevier, vol. 370(C).
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    4. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    5. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Liu, Xianjie & Feng, Qian & Peng, Zhigang & Zheng, Yong & Liu, Huan, 2020. "Preparation and evaluation of micro-encapsulated thermal control materials for oil well cement slurry," Energy, Elsevier, vol. 208(C).
    7. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    8. Xu, Xiaobin & Su, Yanghan & Kong, Jizhou & Chen, Xing & Wang, Xiaolin & Zhang, Hengyun & Zhou, Fei, 2024. "Performance analysis of thermal management systems for prismatic battery module with modularized liquid-cooling plate and PCM-negative Poisson's ratio structural laminboard," Energy, Elsevier, vol. 286(C).
    9. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Vega-Garita, Victor & Ramirez-Elizondo, Laura & Bauer, Pavol, 2017. "Physical integration of a photovoltaic-battery system: A thermal analysis," Applied Energy, Elsevier, vol. 208(C), pages 446-455.
    11. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    12. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    13. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    14. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    16. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    17. Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.
    18. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    19. Ye, Hong & Wang, Zijun & Wang, Liwei, 2017. "Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions," Applied Energy, Elsevier, vol. 190(C), pages 213-221.
    20. Kang, Zhuang & Peng, Qingguo & Yin, Ruixue & Yao, Zhengmin & Song, Yangyang & He, Biao, 2024. "Investigation of multifactorial effects on the thermal performance of battery pack inserted with multi-layer phase change materials," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1553-:d:1362906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.