IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp1071-1081.html
   My bibliography  Save this article

Study on meso-mechanical mechanism and energy of moisture content on densification of salix psammophila particles

Author

Listed:
  • Li, Zhen
  • Yu, Jin
  • Yue, Qiang
  • Yu, Yue
  • Guo, Xinyu

Abstract

In order to reveal the role moisture content in the dense molding process of Salix psammophila, a discrete element model was established by PFC3D. Under the conditions of temperature of 100 °C and pressure of 0–180 kN, three groups of uniaxial compression simulation with different moisture content were done, and experiments are used to prove the feasibility of using discrete element to simulate the influence of moisture content on the dense molding of Salix psammophila. The significance of this paper on the influence of moisture content on the densification of salix psammophila is as follows: There are abundant shrub resources in northwest China. Effective control of moisture content is conducive to utilization of shrub biomass resources and improvement of product quality; Many scholars have studied the influence of moisture content on forming fuel from the same perspective, but this paper expounds the influence of moisture content on the dense forming of Salix psammophila from the perspectives of force, fracture, energy, etc., providing a reference for the study of the role of moisture content.

Suggested Citation

  • Li, Zhen & Yu, Jin & Yue, Qiang & Yu, Yue & Guo, Xinyu, 2023. "Study on meso-mechanical mechanism and energy of moisture content on densification of salix psammophila particles," Renewable Energy, Elsevier, vol. 205(C), pages 1071-1081.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:1071-1081
    DOI: 10.1016/j.renene.2023.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Wang & Ping Cao, 2017. "Calibrating the Micromechanical Parameters of the PFC2D(3D) Models Using the Improved Simulated Annealing Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, April.
    2. Zamorano, M. & Popov, V. & Rodríguez, M.L. & García-Maraver, A., 2011. "A comparative study of quality properties of pelletized agricultural and forestry lopping residues," Renewable Energy, Elsevier, vol. 36(11), pages 3133-3140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lang, Sen & Zhang, Shouyu & Zhou, Yi & Yang, Jifan & Liu, Simeng & Zhang, Xingjia & Chen, Xuyang & Lyu, Bangyong & Liang, Ning, 2024. "Research on the hot densification mechanism of biomass wastes based on molecular dynamics simulation and components adjustment method," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    2. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    3. Fang, Jinlong & He, Jun & Hong, Yubin & Luo, Zijun & Ke, Huapeng & Fan, Zixuan & Tang, Oujun & Diao, Zenghui & Chen, Diyun & Lingjun, Kong, 2023. "Coupling effect of the refuse and sludge on the physical and combustible properties of the densified pellets for energy production," Renewable Energy, Elsevier, vol. 216(C).
    4. Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
    5. Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.
    6. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    7. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    8. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    9. Bala-Litwiniak, Agnieszka & Zajemska, Monika, 2020. "Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler," Renewable Energy, Elsevier, vol. 162(C), pages 151-159.
    10. María Teresa Miranda & Irene Montero & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas, 2017. "Design and Implementation of a Data Acquisition System for Combustion Tests," Energies, MDPI, vol. 10(5), pages 1-15, May.
    11. Muhammet Enes Önür & Kamil Ekinci & Mihriban Civan & Mehmet Emin Bilgili & Sema Yurdakul, 2023. "Quality Properties and Torrefaction Characteristics of Pellets: Rose Oil Distillation Solid Waste and Red Pine Sawdust," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    12. Noorfidza Yub Harun & Ashak Mahmud Parvez & Muhammad T. Afzal, 2018. "Process and Energy Analysis of Pelleting Agricultural and Woody Biomass Blends," Sustainability, MDPI, vol. 10(6), pages 1-9, May.
    13. Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
    14. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    15. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    16. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    17. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    18. Mata-Sánchez, J. & Pérez-Jiménez, J.A. & Díaz-Villanueva, M.J. & Serrano, A. & Núñez-Sánchez, N. & López-Giménez, F.J., 2014. "Development of olive stone quality system based on biofuel energetic parameters study," Renewable Energy, Elsevier, vol. 66(C), pages 251-256.
    19. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.
    20. Cristina Moliner & Alberto Lagazzo & Barbara Bosio & Rodolfo Botter & Elisabetta Arato, 2020. "Production, Characterization, and Evaluation of Pellets from Rice Harvest Residues," Energies, MDPI, vol. 13(2), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:1071-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.