IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123009953.html
   My bibliography  Save this article

Coupling effect of the refuse and sludge on the physical and combustible properties of the densified pellets for energy production

Author

Listed:
  • Fang, Jinlong
  • He, Jun
  • Hong, Yubin
  • Luo, Zijun
  • Ke, Huapeng
  • Fan, Zixuan
  • Tang, Oujun
  • Diao, Zenghui
  • Chen, Diyun
  • Lingjun, Kong

Abstract

Recycling and converting the loose refuse and sludge into densified fuels (S-RDF) is promising for energy production, in which the sludge could be a suitable binder that can be combusted adequately for treatment. The increase in the sludge content and compress pressure positively influenced the physical properties of the S-RDF. Especially, the S-RDF with a mass content of 20% of sludge performed the favorable density of 1.2 g/cm3 and featured an abrasive resistance of 6.542% when the pressure was only 1 MPa, being similar to the RDF being compressed at 4 MPa without sludge. Also, it can be pelletized on industrial scale with a power of 7.5 KW. The results confirmed the positive effect of the sludge on the physical properties of RDF. S-RDF has a high calorific value of 2.25 × 104 kJ/dm3, and the ignition loss of S-RDF slag is low to 2% due to the promoting combustion of sludge by flammable waste. Thus, it is promising to facilitate the recycling and conversion of refuse and sludge into energy to address sustainable development.

Suggested Citation

  • Fang, Jinlong & He, Jun & Hong, Yubin & Luo, Zijun & Ke, Huapeng & Fan, Zixuan & Tang, Oujun & Diao, Zenghui & Chen, Diyun & Lingjun, Kong, 2023. "Coupling effect of the refuse and sludge on the physical and combustible properties of the densified pellets for energy production," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009953
    DOI: 10.1016/j.renene.2023.119081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kong, Lingjun & Tian, ShuangHong & He, Chun & Du, Changming & Tu, YuTing & Xiong, Ya, 2012. "Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust," Applied Energy, Elsevier, vol. 98(C), pages 33-39.
    2. Li, Wei & Yuan, Zhihang & Chen, Xiaoliang & Wang, Hui & Wang, Luochun & Lou, Ziyang, 2021. "Green refuse derived fuel preparation and combustion performance from the solid residues to build the zero-waste city," Energy, Elsevier, vol. 225(C).
    3. Zamorano, M. & Popov, V. & Rodríguez, M.L. & García-Maraver, A., 2011. "A comparative study of quality properties of pelletized agricultural and forestry lopping residues," Renewable Energy, Elsevier, vol. 36(11), pages 3133-3140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    2. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    3. Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
    4. Xing Li & Yongheng Fang & Fuzhou Luo, 2022. "A Study on the Willingness of Industrial Ecological Transformation from China’s Zero Waste Cities Perspective," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    5. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    6. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    7. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    8. Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.
    9. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    10. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    11. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    12. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    13. Bala-Litwiniak, Agnieszka & Zajemska, Monika, 2020. "Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler," Renewable Energy, Elsevier, vol. 162(C), pages 151-159.
    14. María Teresa Miranda & Irene Montero & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas, 2017. "Design and Implementation of a Data Acquisition System for Combustion Tests," Energies, MDPI, vol. 10(5), pages 1-15, May.
    15. Li, Zhen & Yu, Jin & Yue, Qiang & Yu, Yue & Guo, Xinyu, 2023. "Study on meso-mechanical mechanism and energy of moisture content on densification of salix psammophila particles," Renewable Energy, Elsevier, vol. 205(C), pages 1071-1081.
    16. Muhammet Enes Önür & Kamil Ekinci & Mihriban Civan & Mehmet Emin Bilgili & Sema Yurdakul, 2023. "Quality Properties and Torrefaction Characteristics of Pellets: Rose Oil Distillation Solid Waste and Red Pine Sawdust," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    17. Noorfidza Yub Harun & Ashak Mahmud Parvez & Muhammad T. Afzal, 2018. "Process and Energy Analysis of Pelleting Agricultural and Woody Biomass Blends," Sustainability, MDPI, vol. 10(6), pages 1-9, May.
    18. Yang, Wei & Zhu, Youjian & Cheng, Wei & Sang, Huiying & Xu, Hanshen & Yang, Haiping & Chen, Hanping, 2018. "Effect of minerals and binders on particulate matter emission from biomass pellets combustion," Applied Energy, Elsevier, vol. 215(C), pages 106-115.
    19. Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
    20. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.