Development of olive stone quality system based on biofuel energetic parameters study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2013.12.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
- Zamorano, M. & Popov, V. & Rodríguez, M.L. & García-Maraver, A., 2011. "A comparative study of quality properties of pelletized agricultural and forestry lopping residues," Renewable Energy, Elsevier, vol. 36(11), pages 3133-3140.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mata Sánchez, Jesús & Pérez Jiménez, Jose Antonio & Díaz Villanueva, Manuel Jesús & Serrano, Antonio & Núñez, Nieves & López Giménez, Jesús, 2015. "New techniques developed to quantify the impurities of olive stone as solid biofuel," Renewable Energy, Elsevier, vol. 78(C), pages 566-572.
- Mediavilla, Irene & Barro, Ruth & Borjabad, Elena & Peña, David & Fernández, Miguel J., 2020. "Quality of olive stone as a fuel: Influence of oil content on combustion process," Renewable Energy, Elsevier, vol. 160(C), pages 374-384.
- Mata Sánchez, Jesús & Pérez Jiménez, Jose Antonio & Díaz Villanueva, Manuel Jesús & Serrano, Antonio & Núñez, Nieves & López Giménez, Jesús, 2015. "Assessment of near infrared spectroscopy for energetic characterization of olive byproducts," Renewable Energy, Elsevier, vol. 74(C), pages 599-605.
- Gómez-de la Cruz, Francisco J. & Palomar-Carnicero, José M. & Hernández-Escobedo, Quetzalcoatl & Cruz-Peragón, Fernando, 2020. "Determination of the drying rate and effective diffusivity coefficients during convective drying of two-phase olive mill waste at rotary dryers drying conditions for their application," Renewable Energy, Elsevier, vol. 153(C), pages 900-910.
- Mohamed Ali Mami & Hartmut Mätzing & Hans-Joachim Gehrmann & Dieter Stapf & Rainer Bolduan & Marzouk Lajili, 2018. "Investigation of the Olive Mill Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor," Energies, MDPI, vol. 11(8), pages 1-21, July.
- Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
- Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
- Cuevas, Manuel & Martínez-Cartas, María Lourdes & Pérez-Villarejo, Luis & Hernández, Lucía & García-Martín, Juan Francisco & Sánchez, Sebastián, 2019. "Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning," Renewable Energy, Elsevier, vol. 132(C), pages 911-920.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
- Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
- Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
- Nahar, Gaurav & Rajput, Shailendrasingh & Grasham, Oliver & Dalvi, Vishwanath Haily & Dupont, Valerie & Ross, Andrew B. & Pandit, Aniruddha B., 2022. "Technoeconomic analysis of biogas production using simple and effective mechanistic model calibrated with biomethanation potential experiments of water lettuce (pistia stratiotes) inoculated by buffal," Energy, Elsevier, vol. 244(PB).
- Fang, Jinlong & He, Jun & Hong, Yubin & Luo, Zijun & Ke, Huapeng & Fan, Zixuan & Tang, Oujun & Diao, Zenghui & Chen, Diyun & Lingjun, Kong, 2023. "Coupling effect of the refuse and sludge on the physical and combustible properties of the densified pellets for energy production," Renewable Energy, Elsevier, vol. 216(C).
- Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
- Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
- Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
- Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
- Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
- Cyriac S. Mvolo & Emmanuel A. Boakye & Ahmed Koubaa, 2023. "Chemical Elements Content and Distributions within Different Tissue Types of White Spruce," Energies, MDPI, vol. 16(7), pages 1-14, April.
- Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
- Cyriac S. Mvolo & James D. Stewart & Christopher Helmeste & Ahmed Koubaa, 2021. "Variation of White Spruce Carbon Content with Age, Height, Social Classes and Silvicultural Management," Energies, MDPI, vol. 14(23), pages 1-13, December.
- Velázquez-Martí, B. & Sajdak, M. & López-Cortés, I. & Callejón-Ferre, A.J., 2014. "Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas," Renewable Energy, Elsevier, vol. 62(C), pages 478-483.
- Justyna Kujawska & Monika Kulisz & Piotr Oleszczuk & Wojciech Cel, 2023. "Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters," Energies, MDPI, vol. 16(10), pages 1-16, May.
- Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.
- Małgorzata Sieradzka & Ningbo Gao & Cui Quan & Agata Mlonka-Mędrala & Aneta Magdziarz, 2020. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO 2 Capture," Energies, MDPI, vol. 13(5), pages 1-18, February.
- Yusuf, Abdulfatah Abdu & Inambao, Freddie L., 2020. "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
More about this item
Keywords
Quality index; Olive residues; Solid biofuels; Proximate analysis; Ultimate analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:251-256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.