Atomic cobalt on nitrogen-doped graphene for hydrogen generation
Author
Abstract
Suggested Citation
DOI: 10.1038/ncomms9668
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Yue, Xirong & Ji, Xu & Xu, Haiyang & Yang, Bianfeng & Wang, Mengqi & Yang, Yuan, 2023. "Performance investigation on GO-TiO2/PVDF composite ultrafiltration membrane for slightly polluted ground water treatment," Energy, Elsevier, vol. 273(C).
- Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Qianjun Zhi & Rong Jiang & Xiya Yang & Yucheng Jin & Dongdong Qi & Kang Wang & Yunpeng Liu & Jianzhuang Jiang, 2024. "Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Weiwei Fu & Jin Wan & Huijuan Zhang & Jian Li & Weigen Chen & Yuke Li & Zaiping Guo & Yu Wang, 2022. "Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Shan, Pengyue & Bai, Xue & Jiang, Qi & Chen, Yunjian & Lu, Sen & Song, Pei & Jia, Zepeng & Xiao, Taiyang & Han, Yang & Wang, Yazhou & Liu, Tong & Cui, Hong & Feng, Rong & Kang, Qin & Liang, Zhiyong & , 2023. "Bilayer MN4-O-MN4 by bridge-bonded oxygen ligands: Machine learning to accelerate the design of bifunctional electrocatalysts," Renewable Energy, Elsevier, vol. 203(C), pages 445-454.
- Geng Wu & Xiao Han & Jinyan Cai & Peiqun Yin & Peixin Cui & Xusheng Zheng & Hai Li & Cai Chen & Gongming Wang & Xun Hong, 2022. "In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9668. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.