IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000914.html
   My bibliography  Save this article

Probing fractured reservoir of enhanced geothermal systems with fuzzy-genetic inversion model: Impacts of geothermal reservoir environment

Author

Listed:
  • Zhou, Chunwei
  • Liu, Gang
  • Liao, Shengming

Abstract

Our previous study (Zhou et al., 2023) proposed a fuzzy inference model to inverse the predominant flow area in fractured reservoirs. Yet, geothermal reservoir parameters in the direction problem model are hard to make exactly consistent with the actual parameters. This study aims to discuss the impacts of discrepancies between actual geothermal reservoir environment and simulated reservoir environment on the inversion results. An inversion model (including direction problem model, fuzzy inference model, and genetic algorithm) is established to explore the location of predominant flow area under different guess geothermal reservoir environments. The effects of running time, guess reservoir environment (temperature field, pressure field, and Hot Dry Rock property) and guess predominant fracture area property on inversion results are studied. Results show that longer running time can obtain good inversion results, and the inversion speed decreases as running time increases. In addition, the inversion model has good inversion accuracy under different guess geothermal reservoir environments. Lastly, the inversion accuracy is very poor when the guess permeability of predominant fracture area is extremely low. However, the inversion model still needs improvement in the initial stage. It cannot inverse the location of predominant flow area when the running time is less than 1×107 s.

Suggested Citation

  • Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing fractured reservoir of enhanced geothermal systems with fuzzy-genetic inversion model: Impacts of geothermal reservoir environment," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000914
    DOI: 10.1016/j.energy.2024.130320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    2. Zheng, Shuai & Li, Sanbai & Zhang, Dongxiao, 2021. "Fluid and heat flow in enhanced geothermal systems considering fracture geometrical and topological complexities: An extended embedded discrete fracture model," Renewable Energy, Elsevier, vol. 179(C), pages 163-178.
    3. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    4. Domra Kana, Janvier & Djongyang, Noël & Danwe Raïdandi, & Njandjock Nouck, Philippe & Abdouramani Dadjé,, 2015. "A review of geophysical methods for geothermal exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 87-95.
    5. Zhao, Yangsheng & Feng, Zijun & Feng, Zengchao & Yang, Dong & Liang, Weiguo, 2015. "THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M," Energy, Elsevier, vol. 82(C), pages 193-205.
    6. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    7. Li, Sanbai & Feng, Xia-Ting & Zhang, Dongxiao & Tang, Huiying, 2019. "Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs," Applied Energy, Elsevier, vol. 247(C), pages 40-59.
    8. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    9. Guo, Tiankui & Tang, Songjun & Sun, Jiang & Gong, Facheng & Liu, Xiaoqiang & Qu, Zhanqing & Zhang, Wei, 2020. "A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 258(C).
    10. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    11. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing dominant flow paths in enhanced geothermal systems with a genetic algorithm inversion model," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing dominant flow paths in enhanced geothermal systems with a genetic algorithm inversion model," Applied Energy, Elsevier, vol. 360(C).
    2. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    3. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    4. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    5. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    6. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    7. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    8. Wu, Xiaotian & Yu, Likui & Hassan, N.M.S. & Ma, Weiwu & Liu, Gang, 2021. "Evaluation and optimization of heat extraction in enhanced geothermal system via failure area percentage," Renewable Energy, Elsevier, vol. 169(C), pages 204-220.
    9. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    10. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    11. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    12. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    13. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    14. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    15. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    16. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    17. Meng, Nan & Gao, Xiang & Wang, Zeyu & Li, Tailu, 2024. "Numerical investigation and optimization on dynamic power generation performance of enhanced geothermal system," Energy, Elsevier, vol. 288(C).
    18. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    19. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    20. Li, S. & Wang, S. & Tang, H., 2022. "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.