IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp1404-1416.html
   My bibliography  Save this article

Seismic response of a novel hybrid foundation for offshore wind turbine by geotechnical centrifuge modeling

Author

Listed:
  • Li, Xinyao
  • Zeng, Xiangwu
  • Yu, Xiong
  • Wang, Xuefei

Abstract

Offshore wind farms are built in coastal areas prone to have earthquakes. When offshore wind turbines (OWTs) erected on cohesionless sediments are subjected to earthquakes, liquefaction might occur in the shallow deposits that might lead to severe overturning and settlement of the foundation structure. A novel hybrid foundation structure is proposed in this paper consisting of three major components: monopile, friction wheel, and suction bucket. This paper focuses on the performance of the hybrid foundation under earthquake loads. Hybrid foundation models with different dimensions were installed on both dry and saturated loose sand deposits and subjected to dynamic geotechnical centrifuge tests. Pore-water transducers were embedded in the soil to monitor its susceptibility to liquefaction. The dynamic responses of the superstructure were also monitored by linear variable differential transducers (LVDTs) and accelerometers. The experimental results indicated that the new hybrid foundation improved the ground liquefaction resistance. The extent of improvements was more significant in saturated sand than in dry sand. In saturated sand, it was observed that the hybrid foundation with larger bucket depth densified the surrounding soil and helped to mitigate the liquefaction. Consequently, the hybrid system showed responses of a stiffer foundation where the lateral displacement and settlement were reduced significantly.

Suggested Citation

  • Li, Xinyao & Zeng, Xiangwu & Yu, Xiong & Wang, Xuefei, 2021. "Seismic response of a novel hybrid foundation for offshore wind turbine by geotechnical centrifuge modeling," Renewable Energy, Elsevier, vol. 172(C), pages 1404-1416.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:1404-1416
    DOI: 10.1016/j.renene.2020.11.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    2. Wang, Xuefei & Yang, Xu & Zeng, Xiangwu, 2017. "Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 1013-1022.
    3. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subhamoy Bhattacharya & Suryakanta Biswal & Muhammed Aleem & Sadra Amani & Athul Prabhakaran & Ganga Prakhya & Domenico Lombardi & Harsh K. Mistry, 2021. "Seismic Design of Offshore Wind Turbines: Good, Bad and Unknowns," Energies, MDPI, vol. 14(12), pages 1-27, June.
    2. Li, Dayong & Zhao, Jipeng & Wu, Yuqi & Zhang, Yukun & Liang, Hao, 2024. "An innovative bionic offshore wind foundation: Scaled suction caisson," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    4. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    2. Li, Jiale & Wang, Xuefei & Guo, Yuan & Yu, Xiong Bill, 2020. "The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments," Renewable Energy, Elsevier, vol. 152(C), pages 1109-1120.
    3. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.
    4. He, Kunpeng & Ye, Jianhong, 2023. "Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way," Renewable Energy, Elsevier, vol. 202(C), pages 453-469.
    5. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.
    6. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    7. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    8. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    10. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    11. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings," Energies, MDPI, vol. 13(7), pages 1-23, March.
    12. Zhang, Puyang & Li, Jingyi & Le, Conghuan & Ding, Hongyan, 2022. "Seismic responses of two bucket foundations for offshore wind turbines based on shaking table tests," Renewable Energy, Elsevier, vol. 187(C), pages 1100-1117.
    13. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    14. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    15. Conghuan Le & Yane Li & Hongyan Ding, 2019. "Study on the Coupled Dynamic Responses of a Submerged Floating Wind Turbine under Different Mooring Conditions," Energies, MDPI, vol. 12(3), pages 1-21, January.
    16. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    17. Sun, Wei & Lin, Wei-Cheng & You, Fei & Shu, Chi-Min & Qin, Sheng-Hui, 2019. "Prevention of green energy loss: Estimation of fire hazard potential in wind turbines," Renewable Energy, Elsevier, vol. 140(C), pages 62-69.
    18. Cong, Shuai & James Hu, Sau-Lon & Li, Hua-Jun, 2022. "Using incomplete complex modes for model updating of monopiled offshore wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 522-534.
    19. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    20. Yang, Yang & Bashir, Musa & Li, Chun & Michailides, Constantine & Wang, Jin, 2020. "Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 1171-1184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:1404-1416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.