IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp179-199.html
   My bibliography  Save this article

Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines

Author

Listed:
  • Mo, Renjie
  • Cao, Renjing
  • Liu, Minghou
  • Li, Miao

Abstract

The structural stability of offshore wind turbines is constantly being challenged in seismically active areas. This study investigated the effect of ground motion directionality on the seismic dynamic responses of monopile offshore wind turbines (MOWTs). A set of horizontal pairs of ground motions were applied to a 5 MW MOWT model. Two groups of time-domain simulations, including (1) the wind turbine parked in a calm sea subjected to earthquakes, and (2) the wind turbine during normal operation at the rated wind speed subjected to earthquakes, were performed to investigate the seismic responses of the MOWT. The results showed that the structural responses of the MOWT were significantly affected by the angle of ground motion incidence. The environmental wind and wave loads contributed to a basic drift to the response of the structure, and can mitigate or increase the effect of ground motion directionality. Dynamic analyses using bi-directional horizontal ground motion exciting the wind turbine in the fore-aft (FA) and side-to-side (SS) directions resulted in a significant underestimation of the structural responses. The aerodynamic damping amplified the effect of ground motion directionality, and increased the underestimation of the structural responses using the FA and SS bi-directional excitation.

Suggested Citation

  • Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:179-199
    DOI: 10.1016/j.renene.2021.05.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Jiayao & Dai, Kaoshan & Zhao, Zhi & Mao, Zhenxi & Camara, Alfredo & Zhang, Songhan & Mei, Zhu, 2020. "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation," Renewable Energy, Elsevier, vol. 159(C), pages 1224-1242.
    2. Yuan, Chenyang & Chen, Jianyun & Li, Jing & Xu, Qiang, 2017. "Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads," Renewable Energy, Elsevier, vol. 113(C), pages 1122-1134.
    3. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    4. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    5. Liu, Xiong & Lu, Cheng & Li, Gangqiang & Godbole, Ajit & Chen, Yan, 2017. "Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines," Applied Energy, Elsevier, vol. 204(C), pages 1101-1114.
    6. Wang, Xuefei & Yang, Xu & Zeng, Xiangwu, 2017. "Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 1013-1022.
    7. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    8. Koukoura, Christina & Natarajan, Anand & Vesth, Allan, 2015. "Identification of support structure damping of a full scale offshore wind turbine in normal operation," Renewable Energy, Elsevier, vol. 81(C), pages 882-895.
    9. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    10. Asareh, Mohammad-Amin & Schonberg, William & Volz, Jeffery, 2016. "Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tianyi & Wang, Wenhua & Li, Xin & Wang, Bin, 2023. "Vibration mitigation in offshore wind turbine under combined wind-wave-earthquake loads using the tuned mass damper inerter," Renewable Energy, Elsevier, vol. 216(C).
    2. Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
    3. Chenyang Yuan & Yunfei Xie & Jing Li & Weifeng Bai & Haohao Li, 2022. "Influence of the Number of Ground Motions on Fragility Analysis of 5 MW Wind Turbines Subjected to Aerodynamic and Seismic Loads Interaction," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Liu, Yingzhou & Li, Xin & Shi, Wei & Wang, Wenhua & Jiang, Zhiyu, 2024. "Vibration control of a monopile offshore wind turbines under recorded seismic waves," Renewable Energy, Elsevier, vol. 226(C).
    5. Zheng, Hua-Dong & Wang, Xian-Feng & Liu, Chen-Xi & Wang, Zhen & Wu, Bin, 2022. "Nonlinear seismic performance of a large-scale vertical-axis wind turbine under wind and earthquake action," Renewable Energy, Elsevier, vol. 200(C), pages 24-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    2. Renqiang Xi & Piguang Wang & Xiuli Du & Chengshun Xu & Junbo Jia, 2020. "Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads," Energies, MDPI, vol. 13(15), pages 1-27, July.
    3. Meng, Jiayao & Dai, Kaoshan & Zhao, Zhi & Mao, Zhenxi & Camara, Alfredo & Zhang, Songhan & Mei, Zhu, 2020. "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation," Renewable Energy, Elsevier, vol. 159(C), pages 1224-1242.
    4. Cong, Shuai & James Hu, Sau-Lon & Li, Hua-Jun, 2022. "Using incomplete complex modes for model updating of monopiled offshore wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 522-534.
    5. Yang, Yang & Bashir, Musa & Li, Chun & Michailides, Constantine & Wang, Jin, 2020. "Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 1171-1184.
    6. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    7. Chenyang Yuan & Yunfei Xie & Jing Li & Weifeng Bai & Haohao Li, 2022. "Influence of the Number of Ground Motions on Fragility Analysis of 5 MW Wind Turbines Subjected to Aerodynamic and Seismic Loads Interaction," Energies, MDPI, vol. 15(6), pages 1-18, March.
    8. Li, Jiale & Wang, Xuefei & Guo, Yuan & Yu, Xiong Bill, 2020. "The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments," Renewable Energy, Elsevier, vol. 152(C), pages 1109-1120.
    9. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.
    10. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.
    11. He, Kunpeng & Ye, Jianhong, 2023. "Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way," Renewable Energy, Elsevier, vol. 202(C), pages 453-469.
    12. Fitzgerald, Breiffni & McAuliffe, James & Baisthakur, Shubham & Sarkar, Saptarshi, 2023. "Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs)," Renewable Energy, Elsevier, vol. 211(C), pages 522-538.
    13. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.
    14. Li, Xinyao & Zeng, Xiangwu & Yu, Xiong & Wang, Xuefei, 2021. "Seismic response of a novel hybrid foundation for offshore wind turbine by geotechnical centrifuge modeling," Renewable Energy, Elsevier, vol. 172(C), pages 1404-1416.
    15. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    16. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    17. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    18. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    19. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    20. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:179-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.