Influence of lengthways spacing and phase difference on traveling wave energy absorption characteristics of flexible airfoils in a diamond array
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.09.090
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ma, Qiyu & Ding, Li & Huang, Diangui, 2021. "A study on the influence of schooling patterns on the energy harvest of double undulatory airfoils," Renewable Energy, Elsevier, vol. 174(C), pages 674-687.
- Kinsey, T. & Dumas, G. & Lalande, G. & Ruel, J. & Méhut, A. & Viarouge, P. & Lemay, J. & Jean, Y., 2011. "Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils," Renewable Energy, Elsevier, vol. 36(6), pages 1710-1718.
- Liang Li & Máté Nagy & Jacob M. Graving & Joseph Bak-Coleman & Guangming Xie & Iain D. Couzin, 2020. "Vortex phase matching as a strategy for schooling in robots and in fish," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bai, Yang & Zhu, Qianming & Huang, Diangui, 2024. "Numerical simulation of wave-number effects on the performance of traveling wave pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 229(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Qianming & Ma, Qiyu & Qi, Yinke & Huang, Diangui, 2022. "Traveling wave turbine - An internal flow energy absorption mode based on the traveling wave motion," Renewable Energy, Elsevier, vol. 195(C), pages 137-146.
- Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
- Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
- Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
- Deng, Jian & Wang, Shuhong & Kandel, Prabal & Teng, Lubao, 2022. "Effects of free surface on a flapping-foil based ocean current energy extractor," Renewable Energy, Elsevier, vol. 181(C), pages 933-944.
- Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
- Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
- Wang, Junlei & Tang, Lihua & Zhao, Liya & Zhang, Zhien, 2019. "Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies," Energy, Elsevier, vol. 172(C), pages 1066-1078.
- Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2015. "Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation," Renewable Energy, Elsevier, vol. 81(C), pages 816-824.
- Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
- Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).
- Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.
- Ma, Qiyu & Ding, Li & Huang, Diangui, 2021. "A study on the influence of schooling patterns on the energy harvest of double undulatory airfoils," Renewable Energy, Elsevier, vol. 174(C), pages 674-687.
- Duarte, Leandro & Dellinger, Nicolas & Dellinger, Guilhem & Ghenaim, Abdellah & Terfous, Abdelali, 2021. "Experimental optimisation of the pitching structural parameters of a fully passive flapping foil turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1436-1444.
- Arionfard, Hamid & Nishi, Yoshiki, 2019. "Experimental investigation on the performance of a double-cylinder flow-induced vibration (FIV) energy converter," Renewable Energy, Elsevier, vol. 134(C), pages 267-275.
- Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2019. "Performance evaluation and enhancement of a semi-activated flapping hydrofoil in shear flows," Energy, Elsevier, vol. 189(C).
- Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
- Jiang, W. & Zhang, D. & Xie, Y.H., 2016. "Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil," Energy, Elsevier, vol. 115(P1), pages 1010-1021.
- Zhao, Fuwang & Jiang, Qian & Wang, Zhaokun & Qadri, M. N. Mumtaz & Li, Li & Tang, Hui, 2023. "Interaction of two fully passive flapping foils arranged in tandem and its influence on flow energy harvesting," Energy, Elsevier, vol. 268(C).
- Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
More about this item
Keywords
Traveling wave motion; The diamond array; Lengthways interference; Transverse interference; Phase difference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:98-110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.