IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221026360.html
   My bibliography  Save this article

Effect of shroud on the energy extraction performance of oscillating foil

Author

Listed:
  • Jiang, W.
  • Mei, Z.Y.
  • Wu, F.
  • Han, A.
  • Xie, Y.H.
  • Xie, D.M.

Abstract

A shrouded oscillating-foil turbine is proposed to augment the energy extraction performance. The oscillating foil undergoes combined plunging and pitching motion to convert the flow energy. A diffuser is introduced into the oscillating-foil-based turbine as the shroud. The speed-up and energy extraction performance of the turbine were assessed numerically. The effects of three cost-independent geometrical factors, namely shroud entrance width, shroud angle and streamwise distance between shroud and foil, and shroud sectional shape on energy extraction performance were investigated in detail. The optimal motion parameters for the shrouded oscillating-foil turbine were re-explored due to the altered flow field in the shroud. The results demonstrated that the maximum energy extraction efficiency of bare oscillating foil (0.336) can be augmented by 35.8% to 0.456 by appropriate arrangement of the shroud with a relative chord length of 0.8. The optimal motion parameters for the shrouded foil are slightly different from those of bare foil. The re-tuned motion parameters can further improve the efficiency to 0.47. Considering both the manufacturing cost of the shaped sections and their performance, it is more advantageous and attractive to use a flat plate as the shroud in engineering practices.

Suggested Citation

  • Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026360
    DOI: 10.1016/j.energy.2021.122387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    2. Liu, Pengfei, 2015. "WIG (wing-in-ground) effect dual-foil turbine for high renewable energy performance," Energy, Elsevier, vol. 83(C), pages 366-378.
    3. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    4. Rivarolo, M. & Freda, A. & Traverso, A., 2020. "Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence," Applied Energy, Elsevier, vol. 279(C).
    5. Lu, Kun & Xie, Yonghui & Zhang, Di, 2014. "Nonsinusoidal motion effects on energy extraction performance of a flapping foil," Renewable Energy, Elsevier, vol. 64(C), pages 283-293.
    6. Le, Tuyen Quang & Ko, Jin Hwan, 2015. "Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations," Renewable Energy, Elsevier, vol. 80(C), pages 275-285.
    7. Duarte, Leandro & Dellinger, Nicolas & Dellinger, Guilhem & Ghenaim, Abdellah & Terfous, Abdelali, 2021. "Experimental optimisation of the pitching structural parameters of a fully passive flapping foil turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1436-1444.
    8. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.
    9. Xiao, Qing & Liao, Wei & Yang, Shuchi & Peng, Yan, 2012. "How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil?," Renewable Energy, Elsevier, vol. 37(1), pages 61-75.
    10. Xie, Y.H. & Jiang, W. & Lu, K. & Zhang, D., 2016. "Numerical investigation into energy extraction of flapping airfoil with Gurney flaps," Energy, Elsevier, vol. 109(C), pages 694-702.
    11. Kinsey, T. & Dumas, G. & Lalande, G. & Ruel, J. & Méhut, A. & Viarouge, P. & Lemay, J. & Jean, Y., 2011. "Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils," Renewable Energy, Elsevier, vol. 36(6), pages 1710-1718.
    12. Aranake, Aniket C. & Lakshminarayan, Vinod K. & Duraisamy, Karthik, 2015. "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver," Renewable Energy, Elsevier, vol. 75(C), pages 818-832.
    13. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongkuang & Feng, Yongjun & Chen, Weixing & Gao, Feng, 2022. "Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction," Energy, Elsevier, vol. 255(C).
    2. Wei Jiang & Fan Wu & Ziyue Mei & Rui Shi & Danmei Xie, 2022. "Low-Grade Flow Energy Harvesting by Low-Mass-Ratio Oscillating Bent Plate," Energies, MDPI, vol. 15(5), pages 1-19, February.
    3. Arun Raj Shanmugam & Ki Sun Park & Chang Hyun Sohn, 2023. "Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs," Energies, MDPI, vol. 16(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    2. Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.
    3. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    6. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    7. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    8. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    9. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    10. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    11. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2015. "Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation," Renewable Energy, Elsevier, vol. 81(C), pages 816-824.
    12. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    13. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Jiang, W. & Zhang, D. & Xie, Y.H., 2016. "Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil," Energy, Elsevier, vol. 115(P1), pages 1010-1021.
    15. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2019. "Numerical investigation into power extraction by a fully passive oscillating foil with double generators," Renewable Energy, Elsevier, vol. 133(C), pages 32-43.
    16. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.
    17. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    18. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    19. Lu, Kun & Xie, Yonghui & Zhang, Di & Xie, Gongnan, 2015. "Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator," Energy, Elsevier, vol. 89(C), pages 138-147.
    20. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2016. "The power extraction by flapping foil hydrokinetic turbine in swing arm mode," Renewable Energy, Elsevier, vol. 88(C), pages 130-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.