IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp674-687.html
   My bibliography  Save this article

A study on the influence of schooling patterns on the energy harvest of double undulatory airfoils

Author

Listed:
  • Ma, Qiyu
  • Ding, Li
  • Huang, Diangui

Abstract

Undulatory flexible bodies can harvest energy from fluid flow under certain motion parameters. In order to reveal how schooling patterns affect the energy absorption efficiency of undulatory fishlike airfoils, several parameters have been considered, such as spacing and phase differences between the two airfoils. The object of this study is to employ NACA0012 airfoil as a two-dimensional simplified model, by means of numerical simulation, to investigate the influence of spacing and phase differences on energy harvest of double undulatory airfoils in different patterns. For convenience of analysis, the efficiency of energy harvest, also called energy absorption efficiency, has been calculated separately for each of the double airfoils. The results indicate that energy absorption efficiency, whether in a tandem or staggered pattern, will change significantly, compared with that in a single airfoil.

Suggested Citation

  • Ma, Qiyu & Ding, Li & Huang, Diangui, 2021. "A study on the influence of schooling patterns on the energy harvest of double undulatory airfoils," Renewable Energy, Elsevier, vol. 174(C), pages 674-687.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:674-687
    DOI: 10.1016/j.renene.2021.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang Li & Máté Nagy & Jacob M. Graving & Joseph Bak-Coleman & Guangming Xie & Iain D. Couzin, 2020. "Vortex phase matching as a strategy for schooling in robots and in fish," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Qianming & Ma, Qiyu & Qi, Yinke & Huang, Diangui, 2022. "Traveling wave turbine - An internal flow energy absorption mode based on the traveling wave motion," Renewable Energy, Elsevier, vol. 195(C), pages 137-146.
    2. Ruan, Pengcheng & Huang, Diangui, 2023. "Study of aerodynamic performance of built-in variable wavelength traveling wave turbine," Renewable Energy, Elsevier, vol. 205(C), pages 918-928.
    3. Zhu, Qianming & Qi, Yinke & Huang, Diangui, 2023. "Numerical simulation of performance of traveling wave pump-turbine at different wave speeds in pumping mode," Renewable Energy, Elsevier, vol. 203(C), pages 485-494.
    4. Qi, Mingliang & Ma, Qiyu & Huang, Diangui, 2022. "Influence of lengthways spacing and phase difference on traveling wave energy absorption characteristics of flexible airfoils in a diamond array," Renewable Energy, Elsevier, vol. 200(C), pages 98-110.
    5. Bai, Yang & Zhu, Qianming & Huang, Diangui, 2024. "Numerical simulation of wave-number effects on the performance of traveling wave pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaj Horsevad & David Mateo & Robert E. Kooij & Alain Barrat & Roland Bouffanais, 2022. "Transition from simple to complex contagion in collective decision-making," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zhu, Qianming & Ma, Qiyu & Qi, Yinke & Huang, Diangui, 2022. "Traveling wave turbine - An internal flow energy absorption mode based on the traveling wave motion," Renewable Energy, Elsevier, vol. 195(C), pages 137-146.
    3. Qi, Mingliang & Ma, Qiyu & Huang, Diangui, 2022. "Influence of lengthways spacing and phase difference on traveling wave energy absorption characteristics of flexible airfoils in a diamond array," Renewable Energy, Elsevier, vol. 200(C), pages 98-110.
    4. Joel W. Newbolt & Nickolas Lewis & Mathilde Bleu & Jiajie Wu & Christiana Mavroyiakoumou & Sophie Ramananarivo & Leif Ristroph, 2024. "Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:674-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.