IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp1436-1444.html
   My bibliography  Save this article

Experimental optimisation of the pitching structural parameters of a fully passive flapping foil turbine

Author

Listed:
  • Duarte, Leandro
  • Dellinger, Nicolas
  • Dellinger, Guilhem
  • Ghenaim, Abdellah
  • Terfous, Abdelali

Abstract

A reduced scale prototype of a fully passive flapping foil turbine has been designed and tested in a confined channel at a chord Reynolds number of 60 000. Thanks to an original dynamic tuning strategy of the mechanical properties, experiments have been conducted in a wide range of pitching structural parameters for three different pitching axis locations. The best performances have been achieved when the pitching axis is located at one third of the chord length, for which a hydraulic efficiency of 31.9% has been reached. Relatively good harvesting metrics have also been obtained while moving the pitching axis back to the trailing edge, as long as the pitching stiffness is increased accordingly. The experimental results showed as well that the energy harvested by the pitching motion is negligible compared with the heaving motion. However, a non-zero pitching viscous damping is required in order for the turbine to achieve its best performances.

Suggested Citation

  • Duarte, Leandro & Dellinger, Nicolas & Dellinger, Guilhem & Ghenaim, Abdellah & Terfous, Abdelali, 2021. "Experimental optimisation of the pitching structural parameters of a fully passive flapping foil turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1436-1444.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1436-1444
    DOI: 10.1016/j.renene.2021.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kinsey, T. & Dumas, G. & Lalande, G. & Ruel, J. & Méhut, A. & Viarouge, P. & Lemay, J. & Jean, Y., 2011. "Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils," Renewable Energy, Elsevier, vol. 36(6), pages 1710-1718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    2. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    3. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    2. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    3. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    4. Deng, Jian & Wang, Shuhong & Kandel, Prabal & Teng, Lubao, 2022. "Effects of free surface on a flapping-foil based ocean current energy extractor," Renewable Energy, Elsevier, vol. 181(C), pages 933-944.
    5. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    6. Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
    7. Wang, Junlei & Tang, Lihua & Zhao, Liya & Zhang, Zhien, 2019. "Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies," Energy, Elsevier, vol. 172(C), pages 1066-1078.
    8. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2015. "Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation," Renewable Energy, Elsevier, vol. 81(C), pages 816-824.
    9. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    10. Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).
    11. Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.
    12. Arionfard, Hamid & Nishi, Yoshiki, 2019. "Experimental investigation on the performance of a double-cylinder flow-induced vibration (FIV) energy converter," Renewable Energy, Elsevier, vol. 134(C), pages 267-275.
    13. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2019. "Performance evaluation and enhancement of a semi-activated flapping hydrofoil in shear flows," Energy, Elsevier, vol. 189(C).
    14. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
    15. Jiang, W. & Zhang, D. & Xie, Y.H., 2016. "Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil," Energy, Elsevier, vol. 115(P1), pages 1010-1021.
    16. Zhao, Fuwang & Jiang, Qian & Wang, Zhaokun & Qadri, M. N. Mumtaz & Li, Li & Tang, Hui, 2023. "Interaction of two fully passive flapping foils arranged in tandem and its influence on flow energy harvesting," Energy, Elsevier, vol. 268(C).
    17. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    18. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2019. "Numerical investigation into power extraction by a fully passive oscillating foil with double generators," Renewable Energy, Elsevier, vol. 133(C), pages 32-43.
    19. Xie, Yonghui & Lu, Kun & Zhang, Di, 2014. "Investigation on energy extraction performance of an oscillating foil with modified flapping motion," Renewable Energy, Elsevier, vol. 63(C), pages 550-557.
    20. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1436-1444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.