IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp953-965.html
   My bibliography  Save this article

Numerical analysis of the thermo-hydraulic performance and entropy generation rate of a water-in-glass evacuated tube solar collector using TiO2 water-based nanofluid and only water as working fluids

Author

Listed:
  • López-Núñez, Oscar A.
  • Alfaro-Ayala, J. Arturo
  • Ramírez-Minguela, J.J.
  • Cano-Banda, Fernando
  • Ruiz-Camacho, B.
  • Belman-Flores, Juan Manuel

Abstract

A thermo-hydraulic performance and entropy generation rate comparison of a water-in-glass evacuated tube solar collector using TiO2 water-based nanofluid and water as working fluids is carried out by means of Computational Fluid Dynamics. A complete 3D geometry with variations of the solar radiation and inlet mass flow rates as operating conditions is considered. It was found that, the evacuated tube solar collector had a better performance in terms of outlet temperature and velocity using the nanofluid than using only water as working fluid. Also, the thermal and the exergy efficiencies are increased with the use of the nanofluid. The phenomena of viscous effects, heat transfer and heat loss in a global and local form are considered in the formulation of the entropy generation rate. The results of the local entropy generation rate due to the viscous effects and heat transfer are illustrated. Also, it was obtained that, using nanofluid as working fluid leads to a maximum reduction of the entropy generation rate of 87.5%, 65.5% and 14.71% due to viscous effects, heat transfer and heat loss, respectively. Finally, an improvement of the performance of the water-in-glass evacuated tube solar collector can be observed by using water-based nanofluid as working fluid.

Suggested Citation

  • López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Cano-Banda, Fernando & Ruiz-Camacho, B. & Belman-Flores, Juan Manuel, 2022. "Numerical analysis of the thermo-hydraulic performance and entropy generation rate of a water-in-glass evacuated tube solar collector using TiO2 water-based nanofluid and only water as working fluids," Renewable Energy, Elsevier, vol. 197(C), pages 953-965.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:953-965
    DOI: 10.1016/j.renene.2022.07.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
    2. Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
    3. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    4. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
    2. Natividade, Pablo Sampaio Gomes & de Moraes Moura, Gabriel & Avallone, Elson & Bandarra Filho, Enio Pedone & Gelamo, Rogério Valentim & Gonçalves, Júlio Cesar de Souza Inácio, 2019. "Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids," Renewable Energy, Elsevier, vol. 138(C), pages 152-160.
    3. Mohamed R. Eid, 2022. "3-D Flow of Magnetic Rotating Hybridizing Nanoliquid in Parabolic Trough Solar Collector: Implementing Cattaneo-Christov Heat Flux Theory and Centripetal and Coriolis Forces," Mathematics, MDPI, vol. 10(15), pages 1-24, July.
    4. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    5. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    7. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Babazadeh, Houman, 2021. "Performance of solar collector with turbulator involving nanomaterial turbulent regime," Renewable Energy, Elsevier, vol. 163(C), pages 1222-1237.
    8. Arunkumar, T. & Lim, Hyeong Woo & Denkenberger, David & Lee, Sang Joon, 2022. "A review on carbonized natural green flora for solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    10. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    11. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    12. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Otero R, Gustavo J. & Smit, Stephan H.H.J. & Pecnik, Rene, 2021. "Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines," Energy, Elsevier, vol. 217(C).
    14. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
    15. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    16. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    17. Bader Alshuraiaan, 2023. "Improving a solar collector's efficiency by selecting the composition of the working fluid used," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 384-391.
    18. Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
    19. Marina Tselepi & Costas Prouskas & Dimitrios G. Papageorgiou & Isaac. E. Lagaris & Georgios A. Evangelakis, 2022. "Graphene-Based Phase Change Composite Nano-Materials for Thermal Storage Applications," Energies, MDPI, vol. 15(3), pages 1-12, February.
    20. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:953-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.