IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6480-d907107.html
   My bibliography  Save this article

Characteristics of Cavitation Flow for a Regulating Valve Based on Entropy Production Theory

Author

Listed:
  • Jie He

    (School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018, China)

  • Qihang Liu

    (Mechatronic Engineering Institution, China University of Mining and Technology, Xuzhou 221116, China)

  • Zheng Long

    (China Tobacco Shangdong Industrial Co., Ltd., Jinan 250014, China)

  • Yujia Zhang

    (Mechatronic Engineering Institution, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiumei Liu

    (Mechatronic Engineering Institution, China University of Mining and Technology, Xuzhou 221116, China)

  • Shaobing Xiang

    (Mechatronic Engineering Institution, China University of Mining and Technology, Xuzhou 221116, China)

  • Beibei Li

    (Mechatronic Engineering Institution, China University of Mining and Technology, Xuzhou 221116, China)

  • Shuyun Qiao

    (School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018, China)

Abstract

A regulating valve is a key control element in the coal liquefaction industry, whose flow field distribution is related to the entropy production. In order to make a quantitative evaluation of the energy loss in the cavitation flow and calculate the magnitude and location of the hydraulic loss in the flow field more accurately, entropy production theory is employed to analyze the flow field in the regulating valve numerically. The entropy production under cavitation condition and its influence on steady-state flow force are also discussed. When the opening of the valve increases, the entropy production and energy loss change dramatically. The entropy production rate (EPR) is mainly distributed at the orifice and downstream of the regulating valve, the entropy production rate (EPR) reaches the maximum value at the orifice, and turbulent pulsation entropy production (TPEP) is the main part of the total entropy production for flow. When the valve’s opening increases from 40% to 70%, the total entropy production (TEP) increases from 467.14 W/K to 630.04 W/K. The entropy production by cavitation (EPC) increases firstly and then decreases. The smallest value of EPC is 0.103 W/K at the 40% opening, while the maximum value is 0.119 W/K at 60% opening. Furthermore, the relationship between total entropy production (TEP) and steady-state flow force can be approximated by an exponential distribution. When the steady-state flow force increases, the total entropy production for flow also increases. Cavitation effect on the steady-state flow force is strengthened firstly and then weakened with increasing the valve’s opening. Finally, a discriminant method based on the change of the steady-state flow force is proposed to detect whether cavitation occurs in the valve or not. The results in this paper could provided a directional and quantitative evaluation of energy loss in the regulating valve, which is help for the structural shape optimization and service life extension combining with external characteristics of the valve and internal flow field.

Suggested Citation

  • Jie He & Qihang Liu & Zheng Long & Yujia Zhang & Xiumei Liu & Shaobing Xiang & Beibei Li & Shuyun Qiao, 2022. "Characteristics of Cavitation Flow for a Regulating Valve Based on Entropy Production Theory," Energies, MDPI, vol. 15(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6480-:d:907107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    2. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    3. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wei & Pu, Wei & Ji, Leilei & Yang, Qiaoyue & He, Xinrui & Agarwal, Ramesh, 2024. "Mechanism of the impact of sediment particles on energy loss in mixed-flow pumps," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    2. Ohiemi, Israel Enema & Sunsheng, Yang & Singh, Punit & Li, Yanjun & Osman, Fareed, 2023. "Evaluation of energy loss in a low-head axial flow turbine under different blade numbers using entropy production method," Energy, Elsevier, vol. 274(C).
    3. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    4. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    5. Wang, Tao & Yu, He & Xiang, Ru & Chen, XiaoMing & Zhang, Xiang, 2023. "Performance and unsteady flow characteristic of forward-curved impeller with different blade inlet swept angles in a pump as turbine," Energy, Elsevier, vol. 282(C).
    6. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    7. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    8. Chater, Hamza & Bakhattar, Ilias & Asbik, Mohamed & Koukouch, Abdelghani & Mouaky, Ammar & Ouachakradi, Zakariae, 2024. "Hybrid solar hydrothermal carbonization by integrating photovoltaic and parabolic trough technologies: Energy and exergy analyses, innovative designs, and mathematical Modelling," Energy, Elsevier, vol. 305(C).
    9. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    10. Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Chen, Weisheng & Xiang, Qiujie & Li, Yaojun & Liu, Zhuqing, 2023. "On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows," Energy, Elsevier, vol. 269(C).
    12. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    13. Otero R, Gustavo J. & Smit, Stephan H.H.J. & Pecnik, Rene, 2021. "Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines," Energy, Elsevier, vol. 217(C).
    14. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    15. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    16. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Luo, Lan & Yang, Huya & Li, Xin, 2023. "Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application," Energy, Elsevier, vol. 265(C).
    17. Zibiao Li & Han Li & Siwei Wang & Xue Lu, 2022. "The Impact of Science and Technology Finance on Regional Collaborative Innovation: The Threshold Effect of Absorptive Capacity," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    18. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    19. Li, Zhenggui & Xu, Lixin & Wang, Dong & Li, Deyou & Li, Wangxu, 2023. "Simulation analysis of energy characteristics of flow field in the transition process of pump condition outage of pump-turbine," Renewable Energy, Elsevier, vol. 219(P1).
    20. Khan, Muhammad Sohail & Shah, Rehan Ali & Mei, Sun & Shah, Said Anwar & Khan, Aamir & Shabnam,, 2022. "Investigation of the Nernst–Planck model for a viscous fluid between squeezing plates of magnetic field of variable intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6480-:d:907107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.