IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp431-441.html
   My bibliography  Save this article

Experimental investigation on performance comparison of self excited induction generator and permanent magnet synchronous generator for small scale renewable energy applications

Author

Listed:
  • Krishna, V.B Murali
  • Sandeep, V.
  • Murthy, S.S.
  • Yadlapati, Kishore

Abstract

This paper presents an experimental performance comparison of self-excited induction generator (SEIG) and permanent magnet synchronous generator (PMSG) for renewable energy-based standalone applications. These two generators have gained popularity in constant speed prime mover-driven power generation systems due to their inherent advantages. Many researchers have proposed various configurations with and without power electronics and battery energy storage for SEIG and PMSG systems. In the isolated systems, the maximum generation and load capacities are known and the primary goal is to maintain a constant voltage and frequency across load terminals. In this context, the performance comparison of both generators is needed to identify the simple, viable, and economical solution for a dedicated source and fixed isolated loads. Therefore, an attempt is made on the performance analysis of micro-hydro turbine driven SEIG and PMSG with resistor heating and induction motor driven pump load applications and compared experimentally to identify suitable voltage regulated generator. The proposed study is not employing power electronic based switches for reactive power (VAR) compensation to make the system cost effective with ease of operation. The working procedure and minimum requirements are discussed in detail for the experimental purpose. Keywords - Self-excited induction generator (SEIG), permanent magnet synchronous generator (PMSG), renewable energy sources, power generation, isolated loads, voltage regulation (VR).

Suggested Citation

  • Krishna, V.B Murali & Sandeep, V. & Murthy, S.S. & Yadlapati, Kishore, 2022. "Experimental investigation on performance comparison of self excited induction generator and permanent magnet synchronous generator for small scale renewable energy applications," Renewable Energy, Elsevier, vol. 195(C), pages 431-441.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:431-441
    DOI: 10.1016/j.renene.2022.06.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farooqui, Suhail Zaki, 2012. "Conversion of squirrel cage induction motors to wind turbine PMG," Renewable Energy, Elsevier, vol. 41(C), pages 345-349.
    2. Ion, C.P. & Marinescu, C., 2011. "Autonomous micro hydro power plant with induction generator," Renewable Energy, Elsevier, vol. 36(8), pages 2259-2267.
    3. Nayar, C.V. & Perahia, J. & Thomas, F. & Phillips, S.J. & Pryor, T. & James, W.L., 1991. "Investigation of capacitor-excited induction generators and permanent magnet alternators for small scale wind power generation," Renewable Energy, Elsevier, vol. 1(3), pages 381-388.
    4. Kramer, M. & Terheiden, K. & Wieprecht, S., 2018. "Pumps as turbines for efficient energy recovery in water supply networks," Renewable Energy, Elsevier, vol. 122(C), pages 17-25.
    5. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahvash, Hossein & Taher, Seyed Abbas & Guerrero, Josep M., 2024. "Mitigation of severe false data injection attacks (FDIAs) in marine current turbine (MCT) type 4 synchronous generator renewable energy using promoted backstepping method," Renewable Energy, Elsevier, vol. 222(C).
    2. Ping Jiang & Tianyi Zhang & Jinpeng Geng & Peiguang Wang & Lei Fu, 2023. "An MPPT Strategy for Wind Turbines Combining Feedback Linearization and Model Predictive Control," Energies, MDPI, vol. 16(10), pages 1-16, May.
    3. Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    2. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    3. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    4. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    5. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    6. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    7. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    8. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    10. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    11. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    12. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    13. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    14. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    15. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    16. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    17. Abdulbasit Nasir & Edessa Dribssa & Misrak Girma & Habtamu Bayera Madessa, 2023. "Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications," Energies, MDPI, vol. 16(13), pages 1-16, June.
    18. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    19. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal energy management of water-energy networks via optimal placement of pumps-as-turbines and demand response through water storage tanks," Applied Energy, Elsevier, vol. 283(C).
    20. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:431-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.