IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp137-151.html
   My bibliography  Save this article

An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs

Author

Listed:
  • Zhou, Siyu
  • Han, Yang
  • Yang, Ping
  • Mahmoud, Karar
  • Lehtonen, Matti
  • Darwish, Mohamed M.F.
  • Zalhaf, Amr S.

Abstract

Currently, distribution systems are continuously evolving towards modern and flexible structures while integrating promising renewable energy resources (RERs). In this regard, an optimal network constraint-based expansion planning model combined with an optimal integration framework of intermittent RERs is proposed in this work to improve the topological flexibility in modern distribution networks (DNs). Specifically, the best investment locations and times of substations, lines, and RER-based distributed generations (DGs) are jointly taken into consideration. Additionally, the uncertainty-based multiple scenarios are modeled by probability distribution functions to strengthen the robustness and reliability of DNs influenced by the stochastic of renewable energy and load behavior. The novel network constraint is combined with three levels, where the first level introduces the graph theory to guarantee the radiality topology of modern DNs. In the second level of the network constraint, graph theory and fictitious load theory are collaboratively applied to ensure that each subsystem has a reserve connection interconnected to other subsystems. The third level is modifying the conventional fictitious load theory to ensure each subsystem is linked with at least one DG. The proposed planning model is driven by the minimum present value of total cost, including investment cost of branches, DGs, and substations, cost of substations operation, the electricity purchasing cost of substations and DGs, power losses cost, and environmental penalty cost of conventional generators. Numerical results are presented to verify that a more flexible and resilient topology of the DN system is obtained, and criteria evaluation is introduced to validate its higher performance with respect to existing procedures from power supplied quality, environmental burden, and supplied flexibility three aspects.

Suggested Citation

  • Zhou, Siyu & Han, Yang & Yang, Ping & Mahmoud, Karar & Lehtonen, Matti & Darwish, Mohamed M.F. & Zalhaf, Amr S., 2022. "An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs," Renewable Energy, Elsevier, vol. 194(C), pages 137-151.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:137-151
    DOI: 10.1016/j.renene.2022.05.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokryani, Geev & Hu, Yim Fun & Pillai, Prashant & Rajamani, Haile-Selassie, 2017. "Active distribution networks planning with high penetration of wind power," Renewable Energy, Elsevier, vol. 104(C), pages 40-49.
    2. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2009. "Promotion strategy of clean technologies in distributed generation expansion planning," Renewable Energy, Elsevier, vol. 34(12), pages 2765-2773.
    3. Canizes, Bruno & Soares, João & Lezama, Fernando & Silva, Cátia & Vale, Zita & Corchado, Juan M., 2019. "Optimal expansion planning considering storage investment and seasonal effect of demand and renewable generation," Renewable Energy, Elsevier, vol. 138(C), pages 937-954.
    4. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    5. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    6. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    7. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    8. Alotaibi, Majed A. & Salama, M.M.A., 2016. "An efficient probabilistic-chronological matching modeling for DG planning and reliability assessment in power distribution systems," Renewable Energy, Elsevier, vol. 99(C), pages 158-169.
    9. Abbassi, Abdelkader & Dami, Mohamed Ali & Jemli, Mohamed, 2017. "A statistical approach for hybrid energy storage system sizing based on capacity distributions in an autonomous PV/Wind power generation system," Renewable Energy, Elsevier, vol. 103(C), pages 81-93.
    10. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    3. Xiang, Shizhe & Xu, Da & Wang, Pengda & Bai, Ziyi & Zeng, Lingxiong, 2024. "Optimal expansion planning of 5G and distribution systems considering source-network-load-storage coordination," Applied Energy, Elsevier, vol. 366(C).
    4. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    5. Jiyong Li & Ran Chen & Chengye Liu & Xiaoshuai Xu & Yasai Wang, 2023. "Capacity Optimization of Independent Microgrid with Electric Vehicles Based on Improved Pelican Optimization Algorithm," Energies, MDPI, vol. 16(6), pages 1-23, March.
    6. Qiang Zhou & Jianmei Zhang & Pengfei Gao & Ruixiao Zhang & Lijuan Liu & Sheng Wang & Lin Cheng & Wei Wang & Shiyou Yang, 2023. "Two-Stage Robust Optimization for Prosumers Considering Uncertainties from Sustainable Energy of Wind Power Generation and Load Demand Based on Nested C&CG Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    7. Rastgou, Abdollah, 2024. "Distribution network expansion planning: An updated review of current methods and new challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
    9. Chen, Xianqing & Dong, Wei & Yang, Lingfang & Yang, Qiang, 2023. "Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions," Renewable Energy, Elsevier, vol. 207(C), pages 359-375.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Siyu & Han, Yang & Chen, Shuheng & Yang, Ping & Mahmoud, Karar & Darwish, Mohamed M.F. & Matti, Lehtonen & Zalhaf, Amr S., 2023. "A multiple uncertainty-based Bi-level expansion planning paradigm for distribution networks complying with energy storage system functionalities," Energy, Elsevier, vol. 275(C).
    2. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    3. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    4. Wang, Bangyan & Wang, Xiuli & Zhu, Zongyao & Wu, Xiong, 2023. "Siting and sizing of energy storage for renewable generation utilization with multi-stage dispatch under uncertainty: A tri-level model and decomposition approach," Applied Energy, Elsevier, vol. 344(C).
    5. Canizes, Bruno & Soares, João & Lezama, Fernando & Silva, Cátia & Vale, Zita & Corchado, Juan M., 2019. "Optimal expansion planning considering storage investment and seasonal effect of demand and renewable generation," Renewable Energy, Elsevier, vol. 138(C), pages 937-954.
    6. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).
    7. Xie, Shiwei & Hu, Zhijian & Zhou, Daming & Li, Yan & Kong, Shunfei & Lin, Weiwei & Zheng, Yunfei, 2018. "Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network," Applied Energy, Elsevier, vol. 219(C), pages 207-225.
    8. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    9. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    10. Samal, Rajat Kanti & Tripathy, M., 2019. "A novel distance metric for evaluating impact of wind integration on power systems," Renewable Energy, Elsevier, vol. 140(C), pages 722-736.
    11. Antonio Rubens Baran Junior & Thelma S. Piazza Fernandes & Ricardo Augusto Borba, 2019. "Voltage Regulation Planning for Distribution Networks Using Multi-Scenario Three-Phase Optimal Power Flow," Energies, MDPI, vol. 13(1), pages 1-21, December.
    12. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    13. Gyanendra Singh Sisodia & Einas Awad & Heba Alkhoja & Bruno S. Sergi, 2020. "Strategic business risk evaluation for sustainable energy investment and stakeholder engagement: A proposal for energy policy development in the Middle East through Khalifa funding and land subsidies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2789-2802, September.
    14. Zubo, Rana H.A. & Mokryani, Geev & Abd-Alhameed, Raed, 2018. "Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment," Applied Energy, Elsevier, vol. 220(C), pages 713-722.
    15. Ye, Chengjin & Ding, Yi & Song, Yonghua & Lin, Zhenzhi & Wang, Lei, 2018. "A data driven multi-state model for distribution system flexible planning utilizing hierarchical parallel computing," Applied Energy, Elsevier, vol. 232(C), pages 9-25.
    16. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    17. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    18. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    19. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    20. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:137-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.