IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9769-d1174369.html
   My bibliography  Save this article

Two-Stage Robust Optimization for Prosumers Considering Uncertainties from Sustainable Energy of Wind Power Generation and Load Demand Based on Nested C&CG Algorithm

Author

Listed:
  • Qiang Zhou

    (Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China)

  • Jianmei Zhang

    (Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China)

  • Pengfei Gao

    (Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China)

  • Ruixiao Zhang

    (Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China)

  • Lijuan Liu

    (Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China)

  • Sheng Wang

    (Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China)

  • Lin Cheng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Wei Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Shiyou Yang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

This paper develops a two-stage robust optimization (TSRO) model for prosumers considering multiple uncertainties from the sustainable energy of wind power generation and load demand and extends the existing nested column-and-constraint generation (C&CG) algorithm to solve the corresponding optimization problem. First, considering the impact of these uncertainties on market trading strategies of prosumers, a box uncertainty set is introduced to characterize the multiple uncertainties; a TSRO model for prosumers considering multiple uncertainties is then constructed. Second, the existing nested C&CG algorithm is extended to solve the corresponding optimization problem of which the second-stage optimization is a bi-level one and the inner level is a non-convex optimization problem containing 0–1 decision variables. Finally, a case study is solved. The optimized final overall operating cost of prosumers under the proposed model is CNY 3201.03; the extended algorithm requires only four iterations to converge to the final solution. If a convergence accuracy of 10 −6 is used, the final solution time of the extended algorithm is only 9.75 s. The case study result shows that prosumers dispatch the ESS to store surplus wind power generated during the nighttime period and release the stored electricity when the wind power generation is insufficient during the daytime period. It can contribute to promoting the local accommodation of renewable energy and improving the efficiency of renewable energy utilization. The market trading strategy and scheduling results of the energy storage system (ESS) are affected by multiple uncertainties. Moreover, the extended nested C&CG algorithm has a high convergence accuracy and a fast convergence speed.

Suggested Citation

  • Qiang Zhou & Jianmei Zhang & Pengfei Gao & Ruixiao Zhang & Lijuan Liu & Sheng Wang & Lin Cheng & Wei Wang & Shiyou Yang, 2023. "Two-Stage Robust Optimization for Prosumers Considering Uncertainties from Sustainable Energy of Wind Power Generation and Load Demand Based on Nested C&CG Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9769-:d:1174369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nathphol Khaboot & Chitchai Srithapon & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Increasing Benefits in High PV Penetration Distribution System by Using Battery Enegy Storage and Capacitor Placement Based on Salp Swarm Algorithm," Energies, MDPI, vol. 12(24), pages 1-20, December.
    2. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    3. Zhou, Siyu & Han, Yang & Yang, Ping & Mahmoud, Karar & Lehtonen, Matti & Darwish, Mohamed M.F. & Zalhaf, Amr S., 2022. "An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs," Renewable Energy, Elsevier, vol. 194(C), pages 137-151.
    4. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    5. Chen, Kaixuan & Lin, Jin & Song, Yonghua, 2019. "Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model," Applied Energy, Elsevier, vol. 242(C), pages 1121-1133.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Ke Shang & Felix T. S. Chan & Stephen Karungaru & Kenji Terada & Zuren Feng & Liangjun Ke, 2020. "Two-Stage Robust Optimization for the Orienteering Problem with Stochastic Weights," Complexity, Hindawi, vol. 2020, pages 1-15, November.
    8. Sen, Souvik & Ganguly, Sourav, 2017. "Opportunities, barriers and issues with renewable energy development – A discussion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1170-1181.
    9. Carlos Adrian Correa-Florez & Andrea Michiorri & Georges Kariniotakis, 2019. "Comparative Analysis of Adjustable Robust Optimization Alternatives for the Participation of Aggregated Residential Prosumers in Electricity Markets," Energies, MDPI, vol. 12(6), pages 1-27, March.
    10. Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunyang Hao & Yibo Wang & Chuang Liu & Guanglie Zhang & Hao Yu & Dongzhe Wang & Jingru Shang, 2023. "Research on Two-Stage Regulation Method for Source–Load Flexibility Transformation in Power Systems," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    2. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    3. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    4. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    5. Zare, Amir & Mehdinejad, Mehdi & Abedi, Mehrdad, 2024. "Designing a decentralized peer-to-peer energy market for an active distribution network considering loss and transaction fee allocation, and fairness," Applied Energy, Elsevier, vol. 358(C).
    6. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    8. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    9. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    10. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    11. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    12. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    13. Xuguang Yu & Gang Li & Chuntian Cheng & Yongjun Sun & Ran Chen, 2019. "Research and Application of Continuous Bidirectional Trading Mechanism in Yunnan Electricity Market," Energies, MDPI, vol. 12(24), pages 1-18, December.
    14. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    15. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    16. Zhang, Xihai & Ge, Shaoyun & Liu, Hong & Zhou, Yue & He, Xingtang & Xu, Zhengyang, 2023. "Distributionally robust optimization for peer-to-peer energy trading considering data-driven ambiguity sets," Applied Energy, Elsevier, vol. 331(C).
    17. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    18. Roberts Lazdins & Anna Mutule & Diana Zalostiba, 2021. "PV Energy Communities—Challenges and Barriers from a Consumer Perspective: A Literature Review," Energies, MDPI, vol. 14(16), pages 1-20, August.
    19. Bidan Zhang & Yang Du & Xiaoyang Chen & Eng Gee Lim & Lin Jiang & Ke Yan, 2022. "Potential Benefits for Residential Building with Photovoltaic Battery System Participation in Peer-to-Peer Energy Trading," Energies, MDPI, vol. 15(11), pages 1-21, May.
    20. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9769-:d:1174369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.