IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1358-1374.html
   My bibliography  Save this article

Holistic energy flow analysis of a solar driven thermo-chemical reactor set-up for sustainable hydrogen production

Author

Listed:
  • Menz, Steffen
  • Lampe, Jörg
  • Krause, Johann
  • Seeger, Thomas
  • Fend, Thomas

Abstract

In this contribution, a holistic energy flow analysis of a solar driven pilot plant for green hydrogen production using two-step thermochemical cerium-based redox cycles is carried out. The plant consists of a heliostat field, a large-scale inert gas reactor, an efficient fluid heat recovery system and an electrical vaporizer for steam generation. The system behaviour is physically described, and energy flows are quantified using a complex simulation model considering material and geometric properties of the complete system design. The system energy flow and corresponding impact on plant efficiency is thoroughly analysed with emphasis on plant design, operational strategy, and influence of the crucial control parameters. Influences of a heat recovery system and the size of various types of heat losses are investigated, potential efficiency improvements are revealed and useful possibilities for plant design and material modifications are discussed. The transient system behaviour is investigated by varying temperatures and mass flow rates in a broad practicable range to gain more insight in efficient reactor design and plant control. Two temperature swing strategies are investigated in more detail, which are by far more efficient than any near-isothermal or isothermal strategy for this application.

Suggested Citation

  • Menz, Steffen & Lampe, Jörg & Krause, Johann & Seeger, Thomas & Fend, Thomas, 2022. "Holistic energy flow analysis of a solar driven thermo-chemical reactor set-up for sustainable hydrogen production," Renewable Energy, Elsevier, vol. 189(C), pages 1358-1374.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1358-1374
    DOI: 10.1016/j.renene.2022.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200310X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
    2. Xiao, Lan & Wu, Shuang-Ying & Li, You-Rong, 2012. "Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions," Renewable Energy, Elsevier, vol. 41(C), pages 1-12.
    3. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    4. Palumbo, R. & Keunecke, M. & Möller, S. & Steinfeld, A., 2004. "Reflections on the design of solar thermal chemical reactors: thoughts in transformation," Energy, Elsevier, vol. 29(5), pages 727-744.
    5. Lin, Meng & Haussener, Sophia, 2015. "Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods," Energy, Elsevier, vol. 88(C), pages 667-679.
    6. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shuaishuai & Yang, Bin & Zhi, Yuan & Yu, Xiaohui, 2023. "Thermal-mechanical performance analysis of parabolic trough receivers under various optical errors based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 210(C), pages 687-700.
    2. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    3. Thanda, V.K. & Fend, Th. & Laaber, D. & Lidor, A. & von Storch, H. & Säck, J.P. & Hertel, J. & Lampe, J. & Menz, S. & Piesche, G. & Berger, S. & Lorentzou, S. & Syrigou, M. & Denk, Th. & Gonzales-Pard, 2022. "Experimental investigation of the applicability of a 250 kW ceria receiver/reactor for solar thermochemical hydrogen generation," Renewable Energy, Elsevier, vol. 198(C), pages 389-398.
    4. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    2. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    3. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    4. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    5. Thanda, V.K. & Fend, Th. & Laaber, D. & Lidor, A. & von Storch, H. & Säck, J.P. & Hertel, J. & Lampe, J. & Menz, S. & Piesche, G. & Berger, S. & Lorentzou, S. & Syrigou, M. & Denk, Th. & Gonzales-Pard, 2022. "Experimental investigation of the applicability of a 250 kW ceria receiver/reactor for solar thermochemical hydrogen generation," Renewable Energy, Elsevier, vol. 198(C), pages 389-398.
    6. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    7. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    8. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    9. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    10. Ma, Zhiwen & Davenport, Patrick & Saur, Genevieve, 2022. "System and technoeconomic analysis of solar thermochemical hydrogen production," Renewable Energy, Elsevier, vol. 190(C), pages 294-308.
    11. Rhodes, Nathan R. & Bobek, Michael M. & Allen, Kyle M. & Hahn, David W., 2015. "Investigation of long term reactive stability of ceria for use in solar thermochemical cycles," Energy, Elsevier, vol. 89(C), pages 924-931.
    12. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    13. Mohamed Benghanem & Adel Mellit & Hamad Almohamadi & Sofiane Haddad & Nedjwa Chettibi & Abdulaziz M. Alanazi & Drigos Dasalla & Ahmed Alzahrani, 2023. "Hydrogen Production Methods Based on Solar and Wind Energy: A Review," Energies, MDPI, vol. 16(2), pages 1-31, January.
    14. Kong, Hui & Wang, Jian & Zheng, Hongfei & Wang, Hongsheng & Zhang, Jun & Yu, Zhufeng & Bo, Zheng, 2022. "Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production," Energy, Elsevier, vol. 239(PC).
    15. Thomas Pregger & Günter Schiller & Felix Cebulla & Ralph-Uwe Dietrich & Simon Maier & André Thess & Andreas Lischke & Nathalie Monnerie & Christian Sattler & Patrick Le Clercq & Bastian Rauch & Markus, 2019. "Future Fuels—Analyses of the Future Prospects of Renewable Synthetic Fuels," Energies, MDPI, vol. 13(1), pages 1-36, December.
    16. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    17. Xiangjun Yu & Wenlei Lian & Ke Gao & Zhixing Jiang & Cheng Tian & Nan Sun & Hangbin Zheng & Xinrui Wang & Chao Song & Xianglei Liu, 2022. "Solar Thermochemical CO 2 Splitting Integrated with Supercritical CO 2 Cycle for Efficient Fuel and Power Generation," Energies, MDPI, vol. 15(19), pages 1-20, October.
    18. Wang, Mo & Siddiqui, Kamran, 2010. "The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system," Renewable Energy, Elsevier, vol. 35(11), pages 2501-2513.
    19. Hoskins, Amanda L. & Millican, Samantha L. & Czernik, Caitlin E. & Alshankiti, Ibraheam & Netter, Judy C. & Wendelin, Timothy J. & Musgrave, Charles B. & Weimer, Alan W., 2019. "Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle," Applied Energy, Elsevier, vol. 249(C), pages 368-376.
    20. Milanese, Marco & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Multi-parameter optimization of double-loop fluidized bed solar reactor for thermochemical fuel production," Energy, Elsevier, vol. 134(C), pages 919-932.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1358-1374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.