IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921010552.html
   My bibliography  Save this article

Assessing the impact of offshore wind siting strategies on the design of the European power system

Author

Listed:
  • Radu, David
  • Berger, Mathias
  • Dubois, Antoine
  • Fonteneau, Raphaël
  • Pandžić, Hrvoje
  • Dvorkin, Yury
  • Louveaux, Quentin
  • Ernst, Damien

Abstract

This paper provides a detailed account of the impact of different offshore wind siting strategies on the design of the European power system. To this end, a two-stage method is proposed. In the first stage, a highly-granular siting problem identifies a suitable set of sites where offshore wind plants could be deployed according to a pre-specified criterion. Two siting schemes are analysed and compared within a realistic case study. These schemes essentially select a pre-specified number of sites so as to maximize their aggregate power output and their spatiotemporal complementarity, respectively. In addition, two variants of these siting schemes are provided, wherein the number of sites to be selected is specified on a country-by-country basis rather than Europe-wide. In the second stage, the subset of previously-identified sites is passed to a capacity expansion planning framework that sizes the power generation, transmission and storage assets that should be deployed and operated in order to satisfy pre-specified electricity demand levels at minimum cost. Results show that the complementarity-based siting criterion leads to system designs which are up to 5% cheaper than the ones relying on the power output-based scheme when offshore wind plants are deployed with no consideration for country-based deployment targets. On the contrary, the power output-based scheme leads to system designs which are consistently 2% cheaper than the ones leveraging the complementarity-based siting strategy when such constraints are enforced. The robustness of the reported results is supported by a sensitivity analysis on offshore wind capital expenditure and inter-annual weather variability, respectively.

Suggested Citation

  • Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010552
    DOI: 10.1016/j.apenergy.2021.117700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    2. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    3. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    4. Geth, F. & Brijs, T. & Kathan, J. & Driesen, J. & Belmans, R., 2015. "An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1212-1227.
    5. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    6. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    7. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    8. Christian M. Grams & Remo Beerli & Stefan Pfenninger & Iain Staffell & Heini Wernli, 2017. "Balancing Europe’s wind-power output through spatial deployment informed by weather regimes," Nature Climate Change, Nature, vol. 7(8), pages 557-562, August.
    9. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    10. Frysztacki, Martha Maria & Hörsch, Jonas & Hagenmeyer, Veit & Brown, Tom, 2021. "The strong effect of network resolution on electricity system models with high shares of wind and solar," Applied Energy, Elsevier, vol. 291(C).
    11. Raik Becker & Daniela Thrän, 2018. "Optimal Siting of Wind Farms in Wind Energy Dominated Power Systems," Energies, MDPI, vol. 11(4), pages 1-12, April.
    12. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Ryan Wiser & Joseph Rand & Joachim Seel & Philipp Beiter & Erin Baker & Eric Lantz & Patrick Gilman, 2021. "Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050," Nature Energy, Nature, vol. 6(5), pages 555-565, May.
    14. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    15. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    2. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    3. Alan Ortiz Contreras & Mohamed Badaoui & David Sebastián Baltazar, 2024. "The Optimal Selection of Renewable Energy Systems Based on MILP for Two Zones in Mexico," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    4. Pan, Yue & Qin, Jianjun, 2022. "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty," Applied Energy, Elsevier, vol. 326(C).
    5. Yu, Yang & Wu, Shibo & Yu, Jianxing & Xu, Ya & Song, Lin & Xu, Weipeng, 2022. "A hybrid multi-criteria decision-making framework for offshore wind turbine selection: A case study in China," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    2. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    3. Phillips, K. & Moncada, J.A. & Ergun, H. & Delarue, E., 2023. "Spatial representation of renewable technologies in generation expansion planning models," Applied Energy, Elsevier, vol. 342(C).
    4. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    5. Morgenthaler, Simon & Dünzen, Justus & Stadler, Ingo & Witthaut, Dirk, 2021. "Three stages in the co-transformation of the energy and mobility sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    8. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    9. Aryandoust, Arsam & Lilliestam, Johan, 2017. "The potential and usefulness of demand response to provide electricity system services," Applied Energy, Elsevier, vol. 204(C), pages 749-766.
    10. Groissböck, Markus, 2020. "Impact of spatial renewable resource quality on optimum renewable expansion," Renewable Energy, Elsevier, vol. 160(C), pages 1396-1407.
    11. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    12. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    13. Jahns, Christopher & Osinski, Paul & Weber, Christoph, 2023. "A statistical approach to modeling the variability between years in renewable infeed on energy system level," Energy, Elsevier, vol. 263(PA).
    14. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    15. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    16. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
    17. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    18. Lledó, Llorenç & Ramon, Jaume & Soret, Albert & Doblas-Reyes, Francisco-Javier, 2022. "Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices," Renewable Energy, Elsevier, vol. 186(C), pages 420-430.
    19. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    20. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.