IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1885.html
   My bibliography  Save this paper

Substituting Clean for Dirty Energy: A Bottom-Up Analysis

Author

Listed:
  • Fabian Stöckl
  • Alexander Zerrahn

Abstract

We fit CES and VES production functions to data from a numerical bottom-up optimization model of electricity supply with clean and dirty inputs. This approach allows for studying high shares of clean energy not observable today and for isolating mechanisms that impact the elasticity of substitution between clean and dirty energy. Central results show that (i) dirty inputs are not essential for production. As long as some energy storage is available, the elasticity of substitution between clean and dirty inputs is above unity; (ii) no single clean technology is indispensable, but a balanced mix facilitates substitution; (iii) substitution is harder for higher shares of clean energy. Finally, we demonstrate how changing availability of generation and storage technologies can be implemented in macroeconomic models.

Suggested Citation

  • Fabian Stöckl & Alexander Zerrahn, 2020. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Discussion Papers of DIW Berlin 1885, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1885
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.795779.de/dp1885.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Malikov, Emir & Sun, Kai & Kumbhakar, Subal C., 2018. "Nonparametric estimates of the clean and dirty energy substitutability," Economics Letters, Elsevier, vol. 168(C), pages 118-122.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Claude Diebolt & Catherine Kyrtsou, 2005. "New Trends in Macroeconomics," Post-Print hal-00279607, HAL.
    4. Antonin Pottier & J.C Hourcade & E. Espagne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Post-Print hal-01523021, HAL.
    5. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
    6. Mads Greaker & Tom‐Reiel Heggedal & Knut Einar Rosendahl, 2018. "Environmental Policy and the Direction of Technical Change," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(4), pages 1100-1138, October.
    7. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    8. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    9. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    10. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    11. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    12. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    13. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    14. Roger Fouquet, 2016. "Path dependence in energy systems and economic development," Nature Energy, Nature, vol. 1(8), pages 1-5, August.
    15. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
    16. Giannis Karagiannis & Theodore Palivos & Chris Papageorgiou, 2005. "Variable Elasticity of Substitution and Economic Growth: Theory and Evidence," Springer Books, in: Claude Diebolt & Catherine Kyrtsou (ed.), New Trends in Macroeconomics, pages 21-37, Springer.
    17. Fuss, Melvyn & McFadden, Daniel (ed.), 1978. "Production Economics: A Dual Approach to Theory and Applications," Elsevier Monographs, Elsevier, edition 1, number 9780444850133.
    18. Chris Papageorgiou & Marianne Saam & Patrick Schulte, 2017. "Substitution between Clean and Dirty Energy Inputs: A Macroeconomic Perspective," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 281-290, May.
    19. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    20. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    21. Fuss, Melvyn & McFadden, Daniel, 1978. "Production Economics: A Dual Approach to Theory and Applications (I): The Theory of Production," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, volume 1, number fuss1978.
    22. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    23. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    24. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    25. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
    26. Anthony Wiskich, 2019. "Decreasing substitutability between clean and dirty energy," CAMA Working Papers 2019-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    27. Fuss, Melvyn & McFadden, Daniel, 1978. "Production Economics: A Dual Approach to Theory and Applications (II): Applications of the Theory of Production," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, volume 2, number fuss1978a.
    28. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    29. Revankar, Nagesh S, 1971. "A Class of Variable Elasticity of Substitution Production Functions," Econometrica, Econometric Society, vol. 39(1), pages 61-71, January.
    30. repec:hal:journl:hal-01111105 is not listed on IDEAS
    31. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    32. Meran, Georg, 2019. "Thermodynamic constraints and the use of energy-dependent CES-production functions A cautionary comment," Energy Economics, Elsevier, vol. 81(C), pages 63-69.
    33. Claude Diebolt & Catherine Kyrtsou (ed.), 2005. "New Trends in Macroeconomics," Springer Books, Springer, number 978-3-540-28556-4, February.
    34. Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
    35. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    36. Stefan Pfenninger, 2017. "Energy scientists must show their workings," Nature, Nature, vol. 542(7642), pages 393-393, February.
    37. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    2. Jo, Ara & Miftakhova, Alena, 2024. "How constant is constant elasticity of substitution? Endogenous substitution between clean and dirty energy," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    3. Bakhtavoryan, Rafael & Hovhannisyan, Vardges, 2024. "Residential demand for energy in light of changing solar prices," 2024 Annual Meeting, July 28-30, New Orleans, LA 343883, Agricultural and Applied Economics Association.
    4. Alkis Blanz & Beatriz Gaitan, 2023. "Reducing residential emissions: carbon pricing vs. subsidizing retrofits," Papers 2310.15687, arXiv.org.
    5. Ferguson, Shon & Heijmans, Roweno J.R.K., 2023. "Climate Policy and Trade in Polluting Technologies," Working Paper Series 1470, Research Institute of Industrial Economics.
    6. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean innovation and heterogeneous financing costs," Working Papers 2023: 07, Department of Economics, University of Venice "Ca' Foscari".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    2. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    3. Jo, Ara & Miftakhova, Alena, 2024. "How constant is constant elasticity of substitution? Endogenous substitution between clean and dirty energy," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    4. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    5. Luise Röpke, 2015. "Essays on the Integration of New Energy Sources into Existing Energy Systems," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 58.
    6. Ara Jo & Alena Miftakhova, 2022. "How Constant is Constant Elasticity of Substitution? Endogenous Substitution between Clean and Dirty Energy," CER-ETH Economics working paper series 22/369, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    7. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    8. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
    9. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    10. Xue, Jianpo & Yip, Chong K., 2013. "Aggregate elasticity of substitution and economic growth: A synthesis," Journal of Macroeconomics, Elsevier, vol. 38(PA), pages 60-75.
    11. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    12. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    13. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    14. Frieling, Julius & Madlener, Reinhard, 2017. "The Turning Tide: How Energy has Driven the Transformation of the British Economy Since the Industrial Revolution," FCN Working Papers 7/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    15. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    16. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 259-279.
    17. Wiskich, Anthony, 2024. "A carbon tax versus clean subsidies: Optimal and suboptimal policies for the clean transition," Energy Economics, Elsevier, vol. 132(C).
    18. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    19. Martin Kittel & Wolf-Peter Schill, 2021. "Renewable Energy Targets and Unintended Storage Cycling: Implications for Energy Modeling," Papers 2107.13380, arXiv.org, revised Sep 2021.
    20. Manuel A. Gómez, 2020. "Factor substitution, long‐run growth, and speed of convergence in the one‐sector convex endogenous‐growth model," Metroeconomica, Wiley Blackwell, vol. 71(1), pages 2-21, February.

    More about this item

    Keywords

    Elasticity of substitution; clean and dirty energy; electricity production; decarbonization; green growth;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.