IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp67-77.html
   My bibliography  Save this article

Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method

Author

Listed:
  • Raza, Mohsin
  • Abu-Jdayil, Basim
  • Al-Marzouqi, Ali H.
  • Inayat, Abrar

Abstract

This study presents the thermo-kinetics and thermodynamic analyses of date palm surface fibers (DPSFs) using thermogravimetric analysis. DPSFs were heated non-isothermally from 20 to 800 OC at a ramp rate of 10 OC/min in nitrogen atmosphere. Thermogravimetric analysis indicated that there have been two stages for pyrolysis of DPSFs. Kinetic and thermodynamic parameters have been calculated for the second stage which is further subdivided into two mass-loss regions. The low-temperature stable components were decomposed in a temperature range of 270–390 OC and high-temperature stable components were degraded in a temperature range of 390–600 OC. The Coats–Redfern integral method was employed with 21 different kinetic models from four major solid-state reaction mechanisms. Among all models, the two diffusion models: Ginstling–Brounshtein and Ginstling diffusion were the best fitted models with highest regression coefficient values (R2 > 0.99) in both mass-loss regions. For mass-loss regions: I (270–390 OC) and II (390–600 OC), the activation energy values were found to be 96–98 and 113–114 kJ/mol, respectively. Thermodynamic parameters (ΔH, ΔG, ΔS) were calculated using kinetic data. The findings reported herein are helpful in characterizing date palm fibers as a source of energy, designing reactors, producing chemicals, and understanding the properties of surface fibers for making composites.

Suggested Citation

  • Raza, Mohsin & Abu-Jdayil, Basim & Al-Marzouqi, Ali H. & Inayat, Abrar, 2022. "Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 183(C), pages 67-77.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:67-77
    DOI: 10.1016/j.renene.2021.10.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhijia & Mi, Bingbing & Jiang, Zehui & Fei, Benhua & Cai, Zhiyong & Liu, Xing'e, 2016. "Improved bulk density of bamboo pellets as biomass for energy production," Renewable Energy, Elsevier, vol. 86(C), pages 1-7.
    2. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    3. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    4. Emmanuel Galiwango & Ali H. Al-Marzuoqi & Abbas A. Khaleel & Mahdi M. Abu-Omar, 2020. "Investigation of Non-Isothermal Kinetics and Thermodynamic Parameters for the Pyrolysis of Different Date Palm Parts," Energies, MDPI, vol. 13(24), pages 1-19, December.
    5. Chouchene, Ajmia & Jeguirim, Mejdi & Khiari, Basma & Zagrouba, Fathi & Trouvé, Gwénaëlle, 2010. "Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 271-277.
    6. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Maen Asaad & Abrar Inayat & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2023. "Optimization of Biodiesel Production from Waste Cooking Oil Using a Green Catalyst Prepared from Glass Waste and Animal Bones," Energies, MDPI, vol. 16(5), pages 1-13, February.
    2. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    3. Nishu, & Li, Chong & Yellezuome, Dominic & Li, Yingkai & Liu, Ronghou, 2023. "Catalytic pyrolysis of rice straw for high yield of aromatics over modified ZSM-5 catalysts and its kinetics," Renewable Energy, Elsevier, vol. 209(C), pages 569-580.
    4. Wu, Yan & Yu, Yue & Zhu, Ailing & Fu, Junjie & Xia, Yaping & Lan, Guoxing & Fu, Chuan & Ma, Zhicheng & Xue, Jianfu & Tao, Lin & Xie, Xinrui, 2024. "Effect of different digestate biochars as promoters via sludge anaerobic digestion on subsequent pyrolysis products: Focusing on the nitrogen, sulfur, and chlorine releasing characteristics," Renewable Energy, Elsevier, vol. 226(C).
    5. Han, Chengjin & Wei, Guangsheng & Zhu, Rong & Cheng, Yu & Wang, Runzhe & Wu, Wenhe & Wang, Yefeng, 2023. "Characterization and kinetics of iron oxide reduction by corn straw biochar prepared by pyrolysis using superheated steam atmosphere and hydrothermal processes," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeguirim, Mejdi & Chouchène, Ajmia & Réguillon, Alain Favre & Trouvé, Gwenaelle & Le Buzit, Gérard, 2012. "A new valorisation strategy of olive mill wastewater: Impregnation on sawdust and combustion," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 4-8.
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    4. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    5. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Elucidating the bioenergy potential of raw, hydrothermally carbonized and torrefied waste Arundo donax biomass in terms of physicochemical characterization, kinetic and thermodynamic parameters," Renewable Energy, Elsevier, vol. 187(C), pages 844-856.
    6. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    7. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    8. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    9. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    10. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    11. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    12. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    13. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    14. Wei, Yi & Lu, Licong & Zhang, Xudong & Ji, Jianbing, 2022. "Hydrogen produced at low temperatures by electrochemically assisted pyrolysis of cellulose in molten carbonate," Energy, Elsevier, vol. 254(PC).
    15. Chen, Xinyang & Cai, Di & Yang, Yumiao & Sun, Yuhang & Wang, Binhui & Yao, Zhitong & Jin, Meiqing & Liu, Jie & Reinmöller, Markus & Badshah, Syed Lal & Magdziarz, Aneta, 2023. "Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS," Renewable Energy, Elsevier, vol. 205(C), pages 490-498.
    16. Jin, Jiafeng & Sun, Jinsheng & Lv, Kaihe & Hou, Qilin & Guo, Xuan & Liu, Kesong & Deng, Yan & Song, Lide, 2023. "Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation," Energy, Elsevier, vol. 278(PA).
    17. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    18. Hu, Wanhe & Feng, Zixing & Yang, Jianfei & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures," Energy, Elsevier, vol. 226(C).
    19. Polin, Joseph P. & Peterson, Chad A. & Whitmer, Lysle E. & Smith, Ryan G. & Brown, Robert C., 2019. "Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor," Applied Energy, Elsevier, vol. 249(C), pages 276-285.
    20. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:67-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.