IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1026-1043.html
   My bibliography  Save this article

Investigations of the thermodynamic entropy evaluation in a hydraulic turbine under various operating conditions

Author

Listed:
  • Yu, An
  • Tang, Qinghong
  • Chen, Huixiang
  • Zhou, Daqing

Abstract

The irreversible energy loss due to viscous and turbulent dissipation in a Francis turbine led to a decrease in efficiency. It is difficult to reveal the detailed energy loss distribution by either experimental method or traditional simulation method. In this investigation, the entropy production method is applied to calculate the irreversible energy loss quantitatively and demonstrate the spatial distribution of energy loss intuitively. The flow in the Francis turbine is numerically simulated based on SST turbulence model and Zwart cavitation model. The objectives of this study are to (1) verify the accuracy of entropy production method in irreversible energy loss calculation, (2) investigate the detailed characteristics of entropy production rate in blade channel, blade surface and draft tube, (3) reveal the internal interaction mechanism between cavitation process and entropy production rate generation. The results show that the entropy production method has a credible accuracy for irreversible energy loss calculation. Draft tube and runner have the maximum amount of energy loss, but the guide vanes and runner have the maximum ability of irreversible energy loss generation. Finally, the new definition of entropy production rate induced by cavitation is derived to reveal the interaction mechanism between cavitation process and entropy production rate.

Suggested Citation

  • Yu, An & Tang, Qinghong & Chen, Huixiang & Zhou, Daqing, 2021. "Investigations of the thermodynamic entropy evaluation in a hydraulic turbine under various operating conditions," Renewable Energy, Elsevier, vol. 180(C), pages 1026-1043.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1026-1043
    DOI: 10.1016/j.renene.2021.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    2. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
    3. Florian Ries & Yongxiang Li & Dario Klingenberg & Kaushal Nishad & Johannes Janicka & Amsini Sadiki, 2018. "Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms," Energies, MDPI, vol. 11(6), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    2. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    3. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.
    4. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Luo, Lan & Yang, Huya & Li, Xin, 2023. "Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senda Agrebi & Louis Dreßler & Hendrik Nicolai & Florian Ries & Kaushal Nishad & Amsini Sadiki, 2021. "Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E," Energies, MDPI, vol. 14(19), pages 1-21, October.
    2. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    3. Wei Zhang & Huiren Zhu & Guangchao Li, 2020. "Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array," Energies, MDPI, vol. 13(24), pages 1-17, December.
    4. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    5. Jie He & Qihang Liu & Zheng Long & Yujia Zhang & Xiumei Liu & Shaobing Xiang & Beibei Li & Shuyun Qiao, 2022. "Characteristics of Cavitation Flow for a Regulating Valve Based on Entropy Production Theory," Energies, MDPI, vol. 15(17), pages 1-18, September.
    6. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    7. Zhong Li & Yanna Sun & Weifeng Gong & Dan Ni & Bo Gao, 2024. "Analysis of Energy Loss Characteristics in an Axial-Flow Reactor Coolant Pump Based on Entropy Production Theory," Energies, MDPI, vol. 17(14), pages 1-18, July.
    8. Fan, Yading & Chen, Tairan & Liang, Wendong & Wang, Guoyu & Huang, Biao, 2022. "Numerical and theoretical investigations of the cavitation performance and instability for the cryogenic inducer," Renewable Energy, Elsevier, vol. 184(C), pages 291-305.
    9. Otero R, Gustavo J. & Smit, Stephan H.H.J. & Pecnik, Rene, 2021. "Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines," Energy, Elsevier, vol. 217(C).
    10. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).
    11. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    12. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    14. Li, Zhenggui & Xu, Lixin & Wang, Dong & Li, Deyou & Li, Wangxu, 2023. "Simulation analysis of energy characteristics of flow field in the transition process of pump condition outage of pump-turbine," Renewable Energy, Elsevier, vol. 219(P1).
    15. Khan, Muhammad Sohail & Shah, Rehan Ali & Mei, Sun & Shah, Said Anwar & Khan, Aamir & Shabnam,, 2022. "Investigation of the Nernst–Planck model for a viscous fluid between squeezing plates of magnetic field of variable intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    16. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    17. Tang, Qinghong & Yu, An & Wang, Yongshuai & Tang, Yibo & Wang, Yifu, 2023. "Numerical analysis of vorticity transport and energy dissipation of inner-blade vortex in Francis turbine," Renewable Energy, Elsevier, vol. 203(C), pages 634-648.
    18. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
    19. Parkpoom Sriromreun & Paranee Sriromreun, 2019. "A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets," Energies, MDPI, vol. 12(5), pages 1-16, March.
    20. Liu, Yaming & Chen, Sheng & Liu, Shi & Feng, Yongxin & Xu, Kai & Zheng, Chuguang, 2016. "Methane combustion in various regimes: First and second thermodynamic-law comparison between air-firing and oxyfuel condition," Energy, Elsevier, vol. 115(P1), pages 26-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1026-1043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.