IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp1156-1168.html
   My bibliography  Save this article

Multi objective optimization of cylindrical shape roughness parameters in a solar air heater

Author

Listed:
  • Azadani, Leila N.
  • Gharouni, Nadiya

Abstract

Roughening the absorber plate of a solar air heater is a convenient technique to increase the rate of heat transfer. This study aimed to investigate the effect of discrete cylindrical shape roughness elements on the heat transfer and flow characteristics of a square duct solar air heater using Computational Fluid Dynamics (CFD) simulations. A multi objective optimization algorithm was applied to find the optimum values of four roughness parameters including the roughness diameter (d), height (e), longitudinal pitch (L), and transverse pitch (S). The objectives of the optimization were maximizing the Nusselt number (Nu) and minimizing the friction factor (f). The optimization procedure includes designing of experiments, generating response surfaces, and determining optimum roughness parameters. The optimal space filling design (OSFD) of experiment method was employed to investigate the effect of roughness parameters on the Nusselt number and friction factor with a minimum number of numerical experiments. Once the designed numerical experiments were performed, the Kriging response surface method was used to express the relationships between the Nusselt number and friction factor with the roughness parameters. Then, the non-dominated sorting genetic algorithm II (NSGA II) was applied to determine the optimum roughness parameters. The optimum values of roughness diameter, height, longitudinal pitch, and transverse pitch relative to the channel height (H) were found to be d/H = 0.055, e/H = 0.053, L/H = 0.192, and S/H = 0.158, respectively which yielded a thermo hydraulic performance parameter of 1.20.

Suggested Citation

  • Azadani, Leila N. & Gharouni, Nadiya, 2021. "Multi objective optimization of cylindrical shape roughness parameters in a solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 1156-1168.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1156-1168
    DOI: 10.1016/j.renene.2021.07.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sivakandhan, C. & Arjunan, T.V. & Matheswaran, M.M., 2020. "Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness," Renewable Energy, Elsevier, vol. 147(P1), pages 2345-2357.
    2. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
    3. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2011. "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs," Energy, Elsevier, vol. 36(8), pages 5053-5064.
    4. Kumar, Vikash & Murmu, Ramesh, 2021. "Experimental investigation for thermal performance of inclined spherical ball roughened solar air duct," Renewable Energy, Elsevier, vol. 172(C), pages 1365-1392.
    5. Sharma, Sanjay K. & Kalamkar, Vilas R., 2016. "Computational Fluid Dynamics approach in thermo-hydraulic analysis of flow in ducts with rib roughened walls – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 756-788.
    6. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    7. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    8. Kumar, Anup & Layek, Apurba, 2019. "Nusselt number and friction factor correlation of solar air heater having twisted-rib roughness on absorber plate," Renewable Energy, Elsevier, vol. 130(C), pages 687-699.
    9. Liu, Jian & Song, Yidan & Xie, Gongnan & Sunden, Bengt, 2015. "Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions," Energy, Elsevier, vol. 79(C), pages 1-19.
    10. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    11. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    12. Ravi, Ravi Kant & Saini, R.P., 2016. "Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs," Energy, Elsevier, vol. 116(P1), pages 507-516.
    13. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    14. Arunkumar, H.S. & Kumar, Shiva & Karanth, K. Vasudeva, 2020. "Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study," Renewable Energy, Elsevier, vol. 160(C), pages 297-311.
    15. Das, Biplab & Mondol, Jayanta Deb & Debnath, Suman & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, A., 2020. "Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation," Renewable Energy, Elsevier, vol. 152(C), pages 567-578.
    16. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raj Kumar & Erdem Cuce & Sushil Kumar & Sashank Thapa & Paras Gupta & Bhaskar Goel & C. Ahamed Saleel & Saboor Shaik, 2022. "Assessment of the Thermo-Hydraulic Efficiency of an Indoor-Designed Jet Impingement Solar Thermal Collector Roughened with Single Discrete Arc-Shaped Ribs," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    2. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    3. Zhang, Pu & Xia, Peng & Guo, Xueyan & Xie, Shaozhang & Ma, Wensheng, 2022. "A CFD-adjoint reverse design of transverse rib profile for enhancing thermo-hydraulic performance in the solar air heater," Renewable Energy, Elsevier, vol. 198(C), pages 587-601.
    4. Kumar, Raj & Kumar, Sushil & Nadda, Rahul & Kumar, Khusmeet & Goel, Varun, 2022. "Thermo-hydraulic efficiency and correlation development of an indoor designed jet impingement solar thermal collector roughened with discrete multi-arc ribs," Renewable Energy, Elsevier, vol. 189(C), pages 1259-1277.
    5. Kumar, Rajneesh & Sharma, Akshay & Goel, Varun & Sharma, Rajesh & Sethi, Muneesh & Tyagi, V.V., 2023. "An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater," Renewable Energy, Elsevier, vol. 211(C), pages 964-974.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    3. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    4. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    5. Sheikhnejad, Yahya & Gandjalikhan Nassab, Seyed Abdolreza, 2021. "Enhancement of solar chimney performance by passive vortex generator," Renewable Energy, Elsevier, vol. 169(C), pages 437-450.
    6. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    7. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    8. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    9. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
    10. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    11. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    12. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
    13. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.
    14. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Solar air heater with hyperbolic ribs: 3D simulation with experimental validation," Renewable Energy, Elsevier, vol. 113(C), pages 357-368.
    15. Bensaci, Charaf-Eddine & Moummi, Abdelhafid & Sanchez de la Flor, Francisco J. & Rodriguez Jara, Enrique A. & Rincon-Casado, Alejandro & Ruiz-Pardo, Alvaro, 2020. "Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions," Renewable Energy, Elsevier, vol. 155(C), pages 1231-1244.
    16. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    17. Kumar, Vikash & Murmu, Ramesh, 2021. "Experimental investigation for thermal performance of inclined spherical ball roughened solar air duct," Renewable Energy, Elsevier, vol. 172(C), pages 1365-1392.
    18. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    19. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    20. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1156-1168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.