Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.120608
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
- Ammari, H.D., 2003. "A mathematical model of thermal performance of a solar air heater with slats," Renewable Energy, Elsevier, vol. 28(10), pages 1597-1615.
- Sahu, M.M. & Bhagoria, J.L., 2005. "Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 30(13), pages 2057-2073.
- Chaube, Alok & Sahoo, P.K. & Solanki, S.C., 2006. "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater," Renewable Energy, Elsevier, vol. 31(3), pages 317-331.
- Kumar, Sharad & Saini, R.P., 2009. "CFD based performance analysis of a solar air heater duct provided with artificial roughness," Renewable Energy, Elsevier, vol. 34(5), pages 1285-1291.
- Lanjewar, A.M. & Bhagoria, J.L. & Agrawal, M.K., 2015. "Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc rib roughness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1214-1223.
- Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
- Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
- Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2011. "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs," Energy, Elsevier, vol. 36(8), pages 5053-5064.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
- Aharwal, K.R. & Gandhi, B.K. & Saini, J.S., 2008. "Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater," Renewable Energy, Elsevier, vol. 33(4), pages 585-596.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
- Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
- Menasria, Fouad & Zedairia, Merouane & Moummi, Abdelhafid, 2017. "Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio," Energy, Elsevier, vol. 133(C), pages 593-608.
- Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Kumar, Raj & Sethi, Muneesh & Chauhan, Ranchan & Kumar, Anil, 2017. "Experimental study of enhancement of heat transfer and pressure drop in a solar air channel with discretized broken V-pattern baffle," Renewable Energy, Elsevier, vol. 101(C), pages 856-872.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
- Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
- Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B. & Chamoli, Sunil, 2016. "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 550-605.
- Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
- Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
- Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Solar air heater with hyperbolic ribs: 3D simulation with experimental validation," Renewable Energy, Elsevier, vol. 113(C), pages 357-368.
- Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
- Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
- Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
- Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
- Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
- Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
- Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.
- Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
- Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
- Hamid, Mohammed O.A. & Zhang, Bo, 2015. "Field synergy analysis for turbulent heat transfer on ribs roughened solar air heater," Renewable Energy, Elsevier, vol. 83(C), pages 1007-1019.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
- Singla, Mohit & Hans, Vishavjeet Singh & Singh, Sukhmeet, 2022. "CFD analysis of rib roughened solar evacuated tube collector for air heating," Renewable Energy, Elsevier, vol. 183(C), pages 78-89.
- Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Arunachala, U.C., 2022. "Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 627-641.
More about this item
Keywords
Offset ribs; Renewable energy; Solar air heater; Thermal enhancement factor; Artificial roughness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006761. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.